
An Automated Tool for Analysis and Tuning of
GPU-Accelerated Code in HPC Applications

Keren Zhou ,Member, IEEE, Xiaozhu Meng, Ryuichi Sai , Dejan Grubisic , and John Mellor-Crummey

Abstract—The US Department of Energy’s fastest supercomputers and forthcoming exascale systems employ Graphics Processing

Units (GPUs) to increase the computational performance of compute nodes. However, the complexity of GPU architectures makes

tailoring sophisticated applications to achieve high performance on GPU-accelerated systems a major challenge. At best, prior

performance tools for GPU code only provide coarse-grained tuning advice at the kernel level. In this article, we describe GPA, a

performance advisor that suggests potential code optimizations at a hierarchy of levels, including individual lines, loops, and functions.

To gather the fine-grained measurements needed to produce such insights, GPA uses instruction sampling and binary instrumentation

to monitor execution of GPU code. At the time of this writing, GPU instruction sampling is only available on NVIDIAGPUs. To

understand performance losses, GPA uses data flow analysis to approximately attribute measured instruction stalls back to their

causes. GPA then analyzes patterns of stalls using information about a program’s structure and the GPU architecture to identify

optimization strategies that address inefficiencies observed. GPA then employs detailed performance models to estimate the potential

speedup that each optimization might provide. Experiments with benchmarks and applications show that GPA provides useful advice

for tuning GPU code. We applied GPA to analyze and tune a collection of codes on NVIDIAV100 and A100 GPUs. GPA suggested

optimizations that it estimates will accelerate performance across the set of codes by a geometric mean of 1.21�. Applying these

optimizations suggested by GPA accelerated these codes by a geometric mean of 1.19�.

Index Terms—High performance computing, performance analysis, parallel programming, parallel architectures

Ç

1 INTRODUCTION

OVER the last decade, supercomputers with compute
nodes accelerated by Graphics Processing Units (GPUs)

have become commonplace. GPU-accelerated designs are
popular because GPUs can compute much faster and more
efficiently than general purpose processors. For instance,
GPUs provide more than 95 percent of the compute power
on each node of OLCF’s Summit [1]. Forthcoming exascale
systems being developed by the US Department of Energy
(DOE) will all employ GPU-accelerated compute nodes as
well. For that reason, tools for tuning code performance on
GPUs are an urgent need.

Tuning applications for GPU-accelerated compute nodes
is a major challenge. GPU architectures are complex and
hardware mechanisms for performance monitoring provide
only limited information. In this paper, we focus on the chal-
lenge of automatically identifying inefficiencies in GPU-
accelerated applications that are associated with data move-
ment and computation on GPUs and advising application
developers how to ameliorate such inefficiencies.

Prior research on GPU performance tools focused on
identifying and analyzing hot GPU code. GPU profilers [2],
[3], [4], [5], [6], [7], [8] trace activities and monitor hardware

counters to provide performance feedback about GPU code
but do not analyze bottlenecks and suggest optimizations.
Alternatively, GPU performance tools based on instru-
mentation [9], [10], [11], [12], [13], [14] collect detailed
information to provide low-level performance insights.
Shortcomings of these tools are that they can only iden-
tify problems amenable to measurement with instrumen-
tation. Furthermore, instrumentation-based tools don’t
suggest optimizations to ameliorate the problems, and
they don’t provide an estimate of the improvement one
can expect by addressing a problem.

Instruction-based sampling [15], [16], [17] is a useful
technique for fine-grained performance measurement and
analysis on modern processors. In 2015, NVIDIA added
support for instruction-based sampling to their GPUs [18],
which they call PC sampling. Each instruction sample has a
stall reason associated with it if the sampled instruction is
stalled. At the time of this writing, hardware support for
instruction-level measurement of GPU performance is only
available on NVIDIA GPUs. This will change. Intel is devel-
oping hardware support for instruction-level performance
measurement that will become available in a future genera-
tion of its GPUs.1 In addition, recent commits in AMD’s
ROCm GitHub repository2;3 indicate emerging support for
PC sampling in their GPU software stack.

While some GPU performance tools [2], [4], [5], [19], [20]
employ PC sampling to associate instruction costs with

� The authors are with the Computer Science Department, Rice University,
Houston, TX 77054USA. E-mail: {keren.zhou, xiaozhu.meng, ryuichi, dejan.
grubisic, johnmc}@rice.edu.

Manuscript received 24 Feb. 2021; revised 15 June 2021; accepted 16 June 2021.
Date of publication 1 July 2021; date of current version 15 Oct. 2021.
(Corresponding author: Keren Zhou.)
Recommended for acceptance by S. Alam, L. CurfmanMcInnes, and K.Nakajima.
Digital Object Identifier no. 10.1109/TPDS.2021.3094169

1. Intel has approved public release of this information.
2. https://github.com/ROCm-Developer-Tools/roctracer/blob/

amd-master/inc/ext/prof_protocol.h#L75
3. https://github.com/ROCm-Developer-Tools/roctracer/blob/

amd-master/test/tool/tracer_tool.cpp#L655

854 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7977-3182
https://orcid.org/0000-0002-7977-3182
https://orcid.org/0000-0002-7977-3182
https://orcid.org/0000-0002-7977-3182
https://orcid.org/0000-0002-7977-3182
https://orcid.org/0000-0001-8372-401X
https://orcid.org/0000-0001-8372-401X
https://orcid.org/0000-0001-8372-401X
https://orcid.org/0000-0001-8372-401X
https://orcid.org/0000-0001-8372-401X
https://orcid.org/0000-0003-3336-0726
https://orcid.org/0000-0003-3336-0726
https://orcid.org/0000-0003-3336-0726
https://orcid.org/0000-0003-3336-0726
https://orcid.org/0000-0003-3336-0726
https://orcid.org/0000-0002-9026-5453
https://orcid.org/0000-0002-9026-5453
https://orcid.org/0000-0002-9026-5453
https://orcid.org/0000-0002-9026-5453
https://orcid.org/0000-0002-9026-5453
mailto:keren.zhou@rice.edu
mailto:xiaozhu.meng@rice.edu
mailto:ryuichi@rice.edu
mailto:dejan.grubisic@rice.edu
mailto:dejan.grubisic@rice.edu
mailto:johnmc@rice.edu
https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/inc/ext/prof_protocol.h#L75
https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/inc/ext/prof_protocol.h#L75
https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/test/tool/tracer_tool.cpp#L655
https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/test/tool/tracer_tool.cpp#L655

source code, they do not analyze stall reasons to identify
why they occur or how to avoid them. A tool that analyzes
a program’s inefficiencies and suggests optimizations to
avoid them would relieve developers of the burden of figur-
ing out how to tune a code. Listing 1 shows a code snippet
distilled from a hot loop in BerkeleyGW [21]—an exascale
GW approximation code that uses OpenMP to offload com-
putation to GPUs. GPU profilers such as Nsight-Compute
report high execution dependency stalls in this loop but
provide neither information about the cause of the stalls nor
candidate optimizations to reduce the stalls.

To address the challenge of understanding performance
problems in GPU code and how to ameliorate them, we built
GPA [22]—a GPU performance analysis advisor that ana-
lyzes instruction samples to guide performance optimization
on NVIDIA GPUs. GPA attributes stalls to their causes,
matches patterns of inefficiencywith optimization strategies,
and estimates the potential speedup for each applicable opti-
mization. For the code in Listing 1, GPA attributes stalls to a
device function that performs slow complex number divi-
sion, and associates the device function with its call site on
Line 3. To avoid using the costly device function, GPA sug-
gests replacing the divisionwith amultiplication by its recip-
rocal4 and estimates a 1.18� speedup, which achieves close
to the 1.24� speedup the optimization delivers.

Listing 1. A Hot Loop in the BerkeleyGW Code

1 do n1_loc=n1loc_blk,ntband_dist,n1loc_blksize

2 wdiff = wx_array_t(n1_loc, iw) - wtilde

3 delw = wtilde / wdiff

4 ...

5 matngmatmgp = conjg(aqsmtemp_local(n1_loc,

my_igp)) * aqsntemp(ig, n1_loc)

6 end do

While instruction sampling provides stall information
with low overhead, it has several limitations. First, a sampled
instruction is issued but not executed when its predicate is
false. Moreover, instruction samples lack information about
memory access efficiency and branch divergence. To over-
come the above limitations, we also equipped GPA to collect
performance metrics using binary instrumentation. GPA
combines metrics from instruction sampling and instrumen-
tation to yield a comprehensive performance report.

This paper describes the design and implementation of
GPA—a tool designed to help analyze and optimize the
performance of GPU kernels—as well as our experiences
applying GPA to analyze and optimize GPU-accelerated
applications. Tools with GPA’s capabilities will be essential to
simplify the task of tuning applications for GPU-accelerated

supercomputers, including the DOE’s forthcoming exascale
platforms. GPA employs the following novel components to
analyze, attribute, and understand the reasons behind stalls
observed using instruction-based performancemeasurement:

� an instruction blamer which attributes stalls to their
root causes by analyzing each instruction’s depen-
dency, stall reasons, and executed count,

� a hybrid-mode that considers observed control flow
paths to improve the accuracy of instruction blaming,

� performance optimizers, which correlate inefficiency
patterns with optimization suggestions based on
control flow, program structure, and architecture
features, and

� performance estimators, which estimate speedups
for each optimizer by modeling GPU execution using
instruction samples.

The next section provides background for understanding
the design of GPA. Section 3 describes GPA’s workflow and
its implementation. Section 4 evaluates the utility of GPA’s
optimization suggestions for codes on both NVIDIA V100
and A100 GPUs. Section 5 discusses our experiences using
GPA to study three large GPU codes. Section 6 reviews
related work and distinguishes GPA. Section 7 discusses
limitations of GPA and opportunities for future work.

2 BACKGROUND

To provide background for understanding the design of
GPA, this section describes GPU instructions and GPU per-
formance metrics.

2.1 GPU Instructions

To understand and attribute performance losses in GPU
kernels, GPA analyzes a program’s GPU machine instruc-
tions. GPA currently targets NVIDIA Volta, Turing, and
Ampere GPUs. Table 1 shows the fields of an LDG (load
from global memory) instruction. Each GPU instruction has
an opcode and several operands. GPU instructions also con-
tain three special fields—wait cycles, predicate, and bar-
riers. Wait cycles indicate how many cycles the GPU should
wait before issuing an instruction. A predicate determines if
an issued instruction will execute. If its predicate is false, an
instruction issues but does not occupy any execution unit.
Barriers enforce instruction ordering. For variable latency
instructions, such as memory instructions and long latency
arithmetic instructions, a read/write barrier is set at the
source instruction, and a wait mask is set in the destination
instruction. In the recent GPU architectures, barrier instruc-
tions (e.g., LDGDEPBAR) can be used to decouple barrier
dependency from register dependency [23], yielding more
flexible instruction scheduling and better latency hiding.
GPA analyzes instruction operands [24] including regular

TABLE 1
Fields in the @P0 LDG.32 R0, [R2] Instruction

Wait Cycles Wait Mask Write Barrier Read Barrier Predicate Opcode Modifier Destination Operands Source Operands

4 B0 B1 P0 LDG 32 R0 R2, R3

4. One can simplify division by a complex number by multiplying
the numerator and denominator by the complex conjugate of the
denominator.

ZHOU ETAL.: AUTOMATED TOOL FOR ANALYSIS AND TUNING OF GPU-ACCELERATED CODE IN HPC APPLICATIONS 855

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

registers, uniform data path registers, predicate registers,
barriers, and immediate values.

2.2 Performance Metrics

Since Maxwell, NVIDIA GPUs support instruction sam-
pling. Tools can collect instruction samples using NVIDIA’s
CUPTI API [18], [25]. Each streaming multiprocessor (SM)
in a GPU records instruction samples for its warp schedu-
lers in a round-robin fashion. Each instruction sample is
either a latency sample or an active sample. A latency sample
is recorded if all warps on a scheduler are stalled; an active
sample is recorded if at least one warp is not stalled. A stall
reason, such as memory dependency, is associated with
each latency sample. We call samples with a stall reason stall
samples or stalls in the rest of the paper.

In addition to instruction sampling, CUPTI also provides
interfaces to instrument GPU binaries to collect performance
metrics that can’t be measured using instruction sampling,
such as executed instructions andmemory accesses, Asmen-
tioned in Section 1, predicated instructions are not always
executed. Using instrumentation, we collect the number of
executed instructions and issued instructions for every pro-
gram counter (PC), and define instruction efficiency as the
ratio of issued instructions to executed instructions. If
threads within a warp do not access aligned and coalesced
global memory addresses, multiple memory transactions are
generated, causing memory throttling. Similarly, if threads
within a warp access the same bank on the shared memory,
multiple shared memory transactions are generated. We col-
lect the actual number of memory transactions and the theo-
retical number of memory transactions as if addresses are
coalesced and don’t conflict to check if memory access pat-
terns should be adjusted. For each memory instruction, we
define memory efficiency as the ratio of theoretical memory
transactions to actual memory transactions.

3 GPA’S DESIGN

Section 3.1 introduces GPA’s workflow. Section 3.2
describes how GPA attributes stalls to their causes. Sec-
tion 3.3 describes GPA’s performance optimizers. Section 3.4
presents models for estimating the benefit of optimizations.

3.1 Overview

Fig. 1 shows a high-level overview of GPA’s components.
GPA uses a profiler to collect GPU instruction profiles and
record GPU binaries for postmortem analysis. GPA’s static
analyzer analyzes GPU binaries to dump the control flow
and program structure of each GPU function and gather
information about the architecture (e.g., instruction latency).
Then, GPA’s dynamic analyzer takes in the instruction pro-
files and static analysis results to generate optimization sug-
gestions using the following steps. First, the instruction
blamer attributes instruction stalls to their causes. It also cal-
culates instruction efficiency and memory efficiency for
each instruction. Second, each performance optimizer employs
rules to match stalls based on program structure, instruction
efficiencies, and memory efficiencies of hot program
regions. Performance estimators estimate each optimizer’s
speedup based the matched stalls. Finally, GPA outputs top
recommended optimization suggestions to a raw report. A

Graphical User Interface (GUI) associates stalls with individ-
ual lines and loops in GPU kernels.

GPA supports both sampling and hybrid modes. In sam-
pling mode, GPA’s profiler only collects instruction samples
in instruction profiles. In sampling mode, the instruction
blamer considers every issued instruction as executed when
attributing stalls and does not calculate efficiency metrics.
As a result, optimizations that rely on efficiency metrics are
not available in the sampling mode. In hybrid mode, GPA’s
profiler uses one pass to collect instruction samples and a
few more passes to collect instrumentation-based perfor-
mance metrics. In hybrid mode, the instruction blamer
assesses which instructions are executed to improve stall
attribution, and all GPU optimizers are used to match stalls
with optimization strategies. Section 4.3 compares GPA’s
end-to-end overhead for sampling and hybrid modes.

GPA is an advisor tool that automates performance pro-
filing and analysis. To prepare an application for study by
GPA, a developer needs to specify appropriate flags so that
the compiler will include line mapping information in the
generated executable. GPA needs line mapping information
for meaningful performance reports. GPA’s performance
advice report for an application contains optimization sug-
gestions ranked by their estimated speedups in text format.
One can start with GPA’s sampling mode to profile and ana-
lyze an application with a representative input. If the output
advice does not contain insightful suggestions to guide per-
formance optimization, one can switch to hybrid mode,
which enables more optimizers but with higher profiling
and analysis overhead. Currently, GPA’s GUI associates
instruction stalls on each GPU kernel’s source lines, loops,
and functions. In the future, we plan to integrate optimiza-
tion suggestions into the GUI.

3.2 Blaming Stalls on Instructions

GPA analyzes instruction dependencies to blame stalls on
their source instructions. To do so, GPA first uses backward
slicing to analyze dependencies among instructions in the
control flow of each GPU function. Next, GPA builds an
instruction dependency graph in which each node repre-
sents an instruction, annotated with its performance met-
rics, and each edge indicates a def-use relation. Then, GPA
prunes edges that are unlikely to cause stalls using several
heuristic rules. Finally, GPA apportions each instruction’s
stalls to its sources based on each source’s issued/executed
instructions and the length its dependency edge. In the

Fig. 1. GPA’s components.

856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

following sections, we separately describe the instruction
blamer’s sampling mode and hybrid mode.

3.2.1 Sampling Mode

Backward Slicing. GPA uses intra-function backward slic-
ing [26] onGPU instructions to find each instruction’s depen-
dency sources. Typically, GPA stops when it encounters the
first dependency source along a path because transitive
dependency sources are unlikely to cause stalls. However,
when an instruction dependency source along a control flow
path is predicated, backward slicing continues along the
path until the union of predicates along the path covers all
conditions. Consider Fig. 2a as an example. To find all possi-
ble dependency sources for the stalls of the IADD instruction
in B3, slicing doesn’t stop at the LDG instruction in B1

because it is not executed if predicate P0 is false. Slicing con-
tinues to find the LDL instruction in B0 along the path to
cover all conditions.

In practice, GPU binaries for some applications contain a
large number of functions and blocks, which can make
backward slicing costly. For example, NAMD3 [27] contains
68 GPU binaries, of which the largest is 89 MB with 4,492
functions. Using a single CPU thread, GPA takes 12 hours
to analyze these binaries. To accelerate backward slicing,
we enhanced GPA to perform slicing for each basic block in
parallel to reduce the slicing time for NAMD3 to 30 minutes
using 32 CPU threads, achieving a 24� speedup.

Dependency Graph Creation: After computing static def-
use chains for a GPU function’s instructions, GPA creates a
dynamic instruction dependency graph. GPA creates edges
between a stalled instruction and its dependency sources
that have any issued instruction sample. GPA assigns every
dependency source one sample if none of them has been
sampled as an issued instruction.

Cold Edge Pruning: The instruction dependency graph
GPA computes has many “cold edges” that are unlikely to
cause stalls. GPA uses the following heuristics rules to
prune cold edges from the dependency graph.

1) Opcode based pruning. Attribute memory dependency
stalls only to memory instructions and memory bar-
rier instructions. Attribute synchronization depen-
dency stalls only to synchronization instructions.

2) Dominator based pruning. For an edge e from node i to
node j, remove the edge from the dependency graph

if there is a non-predicated instruction k that uses
the same operands that i defines and j uses, and k
appears in every path from i to j in the control flow
graph, because we would have observed stalls at k
rather than j if i caused any stalls.

3) Instruction latency based pruning. For an edge e from
node i to node j, prune it from the dependency
graph if the number of instructions in every path
from i to j in the control flow graph is greater than
the latency of i.

Opcode based pruning removes the edge from IMAD to the
IADD in the sampling mode of Fig. 2c because IMAD is an
arithmetic instruction that does not cause memory depen-
dency stalls.

GPA uses micro-benchmarks [28] to measure the latency
of fixed latency instructions. For variable latency instruc-
tions, such as memory load/store, GPA uses their upper
bound to perform conservative pruning.

Stall Attribution: After pruning cold edges, some nodes in
the dependency graph may still have multiple incoming
edges. GPA blames stalls on the source of incoming edges
based on the following two rules:

1) With more issued instruction samples, blame more
stalls on the dependency source.

2) With a longer path, blame less stalls on the depen-
dency source. If an instruction i has multiple paths
to instruction j in the control flow graph, GPA calcu-
lates the average length of all paths to represent the
length of edge e between node i and node j in the
dependency graph.

Equation (1) describes how GPA apportions stalls of an
observed instruction (Sj) on each dependency source (Si),
where Rissue

i and Rpath
i are the ratios of each incoming node

i calculated by heuristics (1) and (2) accordingly.

Si ¼ Rpath
i �Rissue

iP
k2incomingðjÞ Rpath

k �Rissue
k

� Sj: (1)

3.2.2 Hybrid Mode

GPA’s hybrid mode considers information about executed
instructions to blame stalls on their dependency sources
more precisely. In hybrid mode, GPA employs the same
backward slicing strategy used for sampling mode. However,

Fig. 2. An example of blaming stalls on the IADD instruction.

ZHOU ETAL.: AUTOMATED TOOL FOR ANALYSIS AND TUNING OF GPU-ACCELERATED CODE IN HPC APPLICATIONS 857

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

dependency graph creation builds an edge from node i to node
j only if executed instructions have been observed for i. In
hybrid mode, GPA employs an additional rule for cold edge
pruning: it removes a path if any branch in the path has 1.0
instruction efficiency (always jump) and its next block is a fall
through block, or 0.0 instruction efficiency (always fall
through) and its next block is a jump block. If there is no
path from i to j after pruning, GPA removes this edge from
the dependency graph. Consider Fig. 2c as an example,
GPA removes the edge from LDL to IADD because the BRA

after LDL has 1.0 instruction efficiency, indicating that no
path contains B0 to B1 as a sub-path.

Finally, in the stall attribution phase, GPA calculates the
ratios using executed instructions instead of issued instruc-
tions to apportion stalls (Equation (2)).

Si ¼ Rpath
i �Rexec

iP
k2incomingðjÞ Rpath

k �Rexec
k

� Sj: (2)

3.2.3 Stall Classification

Using information about dependency sources, GPA further
classifies memory dependency and execution dependency
stalls as shown in Fig. 3. GPA categorizes memory depen-
dencies as global memory, local memory, or generic memory
according to the source instruction’s opcode. Execution
dependency is more sophisticated. GPA first classifies an
execution dependency as shared memory, arithmetic, or
write-after-read (WAR) based on opcode. WAR dependency
stalls occur when a use instruction writes a register that is
read by a variable latency def instruction. It is worth noting
that some execution dependency stalls may not have any
dependency source. If such stalls occur on amemory instruc-
tion with indirect memory access, GPA classifies the stalls as
address calculation stalls. For GPU architectures after Volta,
modifiers such as X4 and X8 are extensively used to calculate
address at memory instructions to reduce register usage. In
other cases, GPA attributes stalls to the observed instruction
and classifies them as scheduler stalls. As shown in Sec-
tion 4.1, scheduler stalls are small after instruction blaming.

3.3 Suggesting Optimizations

Each performance optimizer in GPA encodes rules to match
stalls that could be reduced by its optimization. Table 2

presents all performance optimizers available in GPA. Opti-
mizers annotated with H are only available in hybrid mode
as they rely on instruction efficiency and/or memory effi-
ciency. At a high level, optimizers either improve parallel-
ism or improve code efficiency. Parallelism optimizers
check if a GPU kernel lacks sufficient parallelism and rec-
ommends adjusting the number of blocks and threads. For
example, if occupancy is bounded by the number of threads,
the Thread Increase optimizer suggests increasing the num-
ber of threads per block to hide latency. Code optimizers
check if certain patterns of stalls exist in particular program
regions. GPA further divides code optimizers into stall
elimination and latency hiding optimizers. Stall elimination
optimizers suggest eliminating or replacing costly instruc-
tions; while latency hiding optimizers recommend rear-
range instructions to hide latency.

We elaborate the workflow of Branch Elimination and
Asynchronous Memory Copy optimizers. The branch elimina-
tion optimizer checks branches instructions that are deter-
mined (always executed/not executed) and aggregates all
stalls from the source block to the destination block because
it assumes instructions in the two blocks can be rearranged
to reduce stalls. Asynchronous memory copy instructions
(LDGSTS, LDGMEMBAR), which load value from global mem-
ory directly to shared memory, are new to NVIDIA’s
Ampere GPU. In earlier GPUs, one must employ a global
memory read instruction followed by a shared memory
store instruction to load values to shared memory; such a
strategy causes large register overhead and exposes global
memory latency. The asynchronous memory copy opti-
mizer finds instruction dependency pairs from global mem-
ory reads to shared memory stores and sums their stalls.

Fig. 3. Classification of detailed dependency stall reasons.

TABLE 2
A Description of GPU Optimizers in GPA

858 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

The optimizer suggests using asynchronous memory copy
instructions to replace synchronous memory copy instruc-
tions to increase the distance between load and use. More-
over, the optimizer also checks the stalls attributed to
asynchronous memory copy instructions if any and sug-
gests increasing the distance between memory transaction
commit (LDGMEMBAR) and its barrier (DEPBAR) if latency is
not hidden as expected.

3.4 Estimating Speedups

Performance optimizers match optimization suggestions
with stalls, but do not provide information about which
methods have a better effect considering the given measure-
ment data, program structure, and the GPU architecture.
GPA addresses this issue with performance estimators that
estimate the speedup of each optimizer based on their
matched stalls. GPA employs both code optimization esti-
mators and parallelism optimization estimators. Sugges-
tions from optimizers with top estimated speedups are
output to a performance advice report.

3.4.1 Code Optimization Estimators

We first estimate the effect of stall elimination optimizers.
Suppose a GPU kernel has a total of T instruction samples
and the matched samples for an optimizer is M. Stall elimi-
nation optimizers assume that all matched stalls, including
matched active samples and latency samples, can be elimi-
nated by optimizing the code. We derive Equation (3) to
estimate the speedup of stall elimination optimizers Se.

Se ¼ T

T �M
: (3)

Unlike stall elimination optimizers, latency hiding opti-
mizers reduce latency samples. We use Equation (4) to esti-
mate the speedup of latency hiding optimizers Sh, where
ML is the number of matched latency samples.

Sh ¼ T

T �ML
: (4)

Equation (4) supposes all latency samples can be elimi-
nated by rearranging instructions. However, in practice, not
all ML can be eliminated. Fig. 4 explains the mental model
of latency hiding optimizations, where the upper bound of
the optimizations is bounded by both the matched latency
samples and active samples. We derive Equation (5) to
refine the estimate of Sh, where A denotes the total number
of active samples.

Sh ¼ T

T �MinðA;MLÞ : (5)

Some optimizations such as loop unrolling only rear-
range code for a specific scope. Therefore, only active sam-
ples within the scope can be used to reduce the scope’s
latency samples. Based on this limitation, we refine the
upper bound of latency hiding optimization with Equa-
tion (6) to consider optimization scopes representing loops
and functions. Sh

l indicates the speedup for a specific scope
l, andML

l is the matched latency samples for a scope l.

Sh
l ¼ T

T �MinðPl02nestedðlÞ Al0 ;M
L
l Þ

: (6)

Suppose we have two loops loop1 and loop2, where loop1
is nested in loop2, the speedup of loop2 is bounded by the
total number of active samples of loop2 and loop1 according
to Equation (6).

3.4.2 Parallelism Optimization Estimator

Unlike code optimizers, parallelism optimizers adjust the
number of blocks and threads to improve performance. To
estimate the speedup of parallelism optimizers, we consider
each warp scheduler’s change of active warps–CW (Equa-
tion (7)) and change of issue rate—CI (Equation (8)) .

For example, if the number of blocks is increased, each
warp scheduler is assigned less active warps so that CW is
less than one. At the same time, as the number of threads is
reduced, the rate that a warp scheduler is issuing is reduced,
and CI is less than one.

CW ¼ Wnew

W
(7)

CI ¼ Inew

I : (8)

By assuming each warp scheduler has the same issue
rate, we derive Equations (9) and (10) to calculate issue rate
I and Inew respectively, where RI is the ratio of issued sam-
ples among all samples. A warp scheduler is issuing if at
least one warp assigned to the scheduler is ready to issue an
instruction.

I ¼ 1� ð1�RIÞW (9)

Inew ¼ 1� ð1�RIÞWnew (10)

Sp ¼ 1

CW � CI � f: (11)

We estimate the speedup of parallelism optimizations
(Sp) based on CW and CI using Equation (11), where f is a fac-
tor that varies between optimizers. Some optimizers assume
there are no pipeline, memory throttle, and select stalls if we
reduce the number of active warps per block to a certain
number (e.g., less than the number of schedulers per SM).

4 EVALUATION

We evaluated GPA’s utility on three x86_64 systems. The
hardware and software specification of the three systems

Fig. 4. A mental model for latency hiding optimizers.

ZHOU ETAL.: AUTOMATED TOOL FOR ANALYSIS AND TUNING OF GPU-ACCELERATED CODE IN HPC APPLICATIONS 859

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

are shown in Table 3. We used GPA to analyze a broad
range of benchmarks and applications, including the Rodi-
nia GPU benchmarks [29], QuickSilver [30], ExaTensor [31],
PeleC [32], Minimod [33], NAMD3 [27], and Berke-
leyGW [21]. Rodinia is a well-known benchmark suite that
consists of many representative GPU computation patterns.
PeleC, NAMD, and BerkeleyGW are codes being refined for
simulations on exascale platforms.

Table 4 shows speedups we achieved on an A100 GPU by
applying optimizations suggested by GPA. One exception is
the BerkeleyGW example, which we only profiled on cori-
gpu using a V100 GPU becaue of its complicated package
dependencies. For each benchmark, we focused on the most
costly kernels and implemented some of the top five optimi-
zations recommended by GPA. We achieved a geometric
mean of 1.19� speedup averaged across optimizations with

individual speedups ranging from 1.00� to 3.69�. The geo-
metric mean of the gap between achieved speedups and
estimated speedups is as low as 4.0 percent. We used the
same optimizations in the top part of Table 4 as our previ-
ous study [22] on a V100 GPU and evaluated their effects on
an A100 GPU to demonstrate the utility of GPA’s suggested
optimizations on a different GPU architecture. The bottom
section in Table 4 is the first evaluation of GPA’s new opti-
mizations. In the rest of this section, we discuss estimated
and achieved speedups by applying one of GPA’s sug-
gested optimizations, GPA’s stall attribution, overhead
comparison between GPA’s sampling and hybrid modes,
and GPA’s optimization workflow.

4.1 Stall Attribution

We evaluated GPA’s instruction blamer using single depen-
dency coverage and scheduler stalls ratio. A node is a single depen-
dency node if each of its incoming edges represents a different
stall dependency. single path coverage is computed as the ratio
of single path node over the total number of nodes in a depen-
dency graph. Fig. 5 shows that most benchmarks have high
single dependency coverage, demonstrating the effectiveness
of GPA’s pruning rules. We also observed that GPA’s hybrid
mode improves the single path coverage of some benchmarks
such as lud and PeleC by pruningwith additional rules.

TABLE 4
Achieved Speedups Averaged Among Five Runs

We improved each code according to the suggestion provided by GPA. Estimate error is computed by jEstimated Speedup�Achieved Speedupj
Achieved Speedup � 100%. The difficulty col-

umn shows the complexity of applying the corresponding optimization to the code. The bottom part of the table is the first evaluation of GPA’s new optimizations.
S andH denote metrics measured by the sampling mode and the hybrid mode accordingly. Zeros are treated as 0.01 in geomean calculation.

TABLE 3
Experimental Platforms

860 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 6 shows the scheduler stalls ratio of each benchmark.
As mentioned in Section 3, some arithmetic stalls are attrib-
uted to the observed instruction and categorized as sched-
uler stalls if the instruction has no dependent edge after
pruning. There are many stall causes for nodes without any
dependent edge. For example, we observed that the com-
piler may annotate some instructions with wait cycles larger
than needed to satisfy the dependencies for the instructions
themselves to satisfy latency requirements for later instruc-
tions. Nevertheless, scheduler stalls only account for 6 per-
cent stalls on average. We observe similar scheduler stall
ratios using the hybrid mode and the sampling mode.

4.2 Speedups

Table 4 compares the estimated speedups reported by
GPA’s hybrid mode and sampling mode. Most bench-
marks show similar estimated speedups in two modes. We
note that the hybrid mode outperforms the sampling
mode from the following aspects. First, the hybrid mode
offers optimization suggestions that are not available (NA)
in the sampling mode. For example, based on the global
memory access adjustment optimizer, we achieved a 1.22�
additional speedup for myocyte by coalescing the global
memory accesses to an array. Second, the hybrid mode
employs extra pruning and attribution rules to attribute
and apportion stalls, which increase the estimate accuracy

of code reordering related optimizations, including b+tree,
lud, and pathfinder.

Fig. 7 compares the achieved speedups in the top section
of Table 4 on A100 and V100 GPUs. Most optimizations
achieve similar speedup on A100 and V100, demonstrating
the generality of GPA’s performance insights. Several opti-
mizations behave differently on the two GPUs. For the
kmeans benchmark, GPA estimates a lower speedup on A100
than V100. For the lavaMD benchmark, GPA’s estimated
speedup is 14 percent higher thanwe achieved.We observed
that the execution on A100 incurs more execution depen-
dency stalls than V100. Using GPA’s GUI tool, we checked
stalls on each source line and found that the major stall dif-
ference is concentrated on two lines where the compiler
schedules instructions differently on the two architectures.

4.3 Overhead

We measured GPA’s runtime, static analysis, and dynamic
analysis overhead. Fig. 8 shows the slowdown of GPA’s
hybrid mode comparing to its sampling mode at runtime.
NVIDIA’s PC sampling mechanism currently serializes con-
current kernels, increasing measurement time. For most
applications, the sampling mode introduces overhead less
than 10�. However, it introduces 54� overhead to the Berke-
leyGW benchmark on cori-gpu. GPA’s hybrid mode has 2–
14� slowdown comparing to its sampling mode because it
instruments GPU binaries to collect other performance met-
rics. For two ExaScale applications, PeleC and BerkeleyGW,

Fig. 7. Achieved speedups comparison between A100 and V100.

Fig. 8. Slowdown with GPA’s hybrid mode and sampling mode.

Fig. 5. Single dependency coverage (The higher the better).

Fig. 6. Scheduler stall ratio (The lower the better).

ZHOU ETAL.: AUTOMATED TOOL FOR ANALYSIS AND TUNING OF GPU-ACCELERATED CODE IN HPC APPLICATIONS 861

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

the hybrid mode introduces 92� and 296� overhead corre-
spondingly. While GPA’s dynamic analysis is fast, GPA’s
static analysis could introduce significant overhead for
applications with many large GPU binaries in the assembly
instruction decoding and backward slicing processes.

4.4 Optimization Workflow

Guided by GPA’s performance advice report, one can gain
performance insight, modify a program’s source code, and
quickly assess the benefits of an optimization. The time
needed for the whole optimization process typically varies
between a few minutes to an hour, depending on the diffi-
culty of optimizations, as noted in Table 4. GPAmay overes-
timate speedups for many reasons, including the limited
scope for reordering code associated with a data depen-
dency, unawareness of loop transformations performed by
the compiler, and work imbalance. For instance, in the bfs
benchmark, GPA suggests unrolling a loop to improve its
performance. We observed the estimated speedup is 19 per-
cent higher than the achieved speedup because the work-
load is highly unbalanced across threads so that loop
unrolling only benefits a few threads. There are also cases in
which overestimation is caused by data dependency. For
example, in the huffman benchmark, much of the stalls are
synchronization dependency stalls. We replaced some
__syncthreads by __syncwarp but not all of them. The
pathfinder benchmark also has a data dependency related
problem. We can only reorder instructions within a limited
scope before synchronizations take place.

5 CASE STUDIES

The codes studied in the bottom part of Table 4 are
described below:

� ExaTensor [31] is a tensor algebra library imple-
mented on NVIDIA GPUs. We studied its tensor
transpose kernel with a six-dimensional tensor.

� Minimod [33] is a stencil benchmark for seismic
modeling. We analyzed its performance with a grid
size of 1003.

� NAMD3 [27] is a high performance parallel molecu-
lar dynamics code for simulating large biomolecular
systems. We used its alanin input configuration run-
ning 9� 105 steps.

� BerkeleyGW [21] is a GPU-accelerated code that uses
the GWmethod to calculate the quasiparticle proper-
ties and the optical responses of a large variety of
materials. We studied it’s matrix elements calcula-
tion (mtxel) kernel.

The case studies were performed on a system with an
A100 GPU. When compiling these codes for the GPU, we
used the options -lineinfo -O3 to generate line mapping
information helpful for GPA’s performance reports.

5.1 ExaTensor

Fig. 9 shows the top performance suggestion from GPA’s
performance report for the ExaTensor benchmark. In GPA’s
performance reports, GPU kernels are ordered by their exe-
cution time. For each kernel, the report lists several perfor-
mance optimization suggestions ranked by their estimated
speedups. For each suggestion, GPA offers hints about code
changes to improve performance and lists hotspots where
those hints could be applied. For each hotspot, GPA sup-
plies program context, importance, and speedup information.
Using the hybrid mode, GPA also provides the memory effi-
ciency and instruction efficiency about the stall source. Pro-
gram context provides information about the locations of
the stalls and their dependency sources. The importance
metric indicates the percentage of stalls this optimizer
matches, and the speedup metric indicates the estimated
speedup after applying suggested code changes.

In Fig. 9, GPA estimates that applying asynchronous
memory copy optimization may improve code performance
by 1.35�. GPA also provides the locations of the matched
hotspot for this optimization. We show this hotspot’s
assembly instructions in Fig. 10, in which a load from global
memory (LDG) instruction is immediately followed by a
store to shared memory (STS) instruction. Following GPA’s
hints, we used a LDGSTS instruction to replace this LDG and
STS pair and overlap the calculation of transposed index
for each element with data transfer. This single optimization
achieves a 1.24� speedup, which is 10 percent lower than
the estimated 1.35� speedup because the scope for code
rearrangement is limited by synchronization. On NVIDIA
GPU architectures prior to the A100, which lack support for
asynchronous memory copy, it is difficult to optimize this
code. As illustrated in Fig. 10, if we increase the distance
between LDG and STS, we have to keep register R2 alive.
Since a large tile is loaded into shared memory, separating
each pair of dependent instructions would require many
live registers and significantly increase register pressure.

Fig. 9. The highest ranked optimization suggestion in GPA’s performance report for the ExaTensor benchmark and the corresponding hotspot in
GPA’s GUI.

Fig. 10. Code pattern that matches asynchronous memory copy
optimization.

862 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

We used GPA again to analyze optimized code. This time
GPA suggests eliminating high execution dependency stalls
caused by indirect memory access at constant memory load
instructions that read the dimensions of the input tensor.
We can assign the number of dimensions as a template
parameter for this kernel so that the compiler can treat it as
a constant and eliminate indirect memory access. This opti-
mization achieves another 1.03� speedup, which is close to
the estimated 1.06� speedup.

5.2 Minimod

Minimod’s target_pml_3d kernel loads all values from a
three dimensional tensor at once and performs a high-order
stencil computation with a halo size of 4. Every thread with
an index within a halo size of a tile boundary reads values
from a halo area. GPA’s branch elimination optimizer sug-
gests some branches are always true. Because each GPU
block has 32� 4� 4 threads, each thread’s Y and Z dimen-
sions are always less than the halo size away from a tile
boundary. To eliminate stalls caused by these branch condi-
tions, we used the block size as a template parameter and
let the compiler elide the branch conditions at compilation
time. This optimization achieves a 1.07� speedup, which
matches GPA’s 1.06� estimated speedup.

Next, we analyzed Minimod’s target_pml_25d kernel
which iteratively loads a piece of data from global memory
to shared memory and performs a high-order stencil com-
putation. GPA’s top warp balance optimization highlights
significant synchronization dependency stalls at a __syn-

cthreads invocation in a loop and suggests eliminating
unnecessary synchronizations. Two synchronizations are
needed to prevent data race if a single tile is used. If the
amount of shared memory use is small, we can use two tiles
to read and update shared memory separately to eliminate
one synchronization in each iteration. We achieved a 1.26�
speedup by employing this optimization, which is the same
as GPA’s estimated speedup.

5.3 NAMD3

We used GPA to analyze the most costly nonbondedForce-

Kernel function in NAMD3. Based on GPA’s report, we
observed that NAMD3 is a highly optimized application.
GPA’s report only suggests two significant optimizations—
code reorder and register increase. We first followed the hints
of the code reorder optimizer but failed to obtain a non-trivial
speedup with GPA since the data dependency is highly intri-
cate. Then we checked the register increase optimizer which
identifies the locations of localmemory loads and stores caused
by register spills, and suggests a 1.05� speedup by eliminating
these stalls. This kernel uses __launch_bounds__ to imply
the minimum number of concurrent blocks on each SM of a
GPU and thus enforces a very low register limit per thread.
However, for the input we studied, while the number of kernel
invocations is large, the number of blocks used by each kernel
is small. By using a special __launch_bounds__ constraint
to allowmore registers when the number of blocks is small, we
achieved a 1.09� speedup.

5.4 BerkeleyGW

In the Introduction, we mentioned that GPA suggests
optimzing a costly device function. Following the guidance,

BerkeleyGW developers changed the code and achieved a
1.24� speedup. GPA’s loop unrolling optimizer also sug-
gests unroll the core loop on Line 1 to improve performance.
We confirmed that this loop is not automatically unrolled
because of dependency among iterations and notified the
developers such an potential optimization. Next, we pro-
filed BerkeleyGW again using GPA’s hybrid mode. This
time GPA’s global memory access adjustment optimizer
indicates that the aqsmtemp_local array on Line 5 is
accessed with low efficiency and estimates a 1.09� speedup
by coalescing memory accesses. The estimated speedup
matches the performance difference between this mxtel ker-
nel’s CUDA version and OpenMP version, and the CUDA
code loads aqsmtemp_local to shared memory using
colaseced memory read to ameliorate this problem. Unfor-
tunately, shared memory is declared implicitly OpenMP
Target and is not widely supported in existing compilers.

6 RELATED WORK

Someprior GPUperformance tools [2], [3], [4], [5], [6], [7], [19],
[20] collect instruction samples for performance analysis.
However, these tools only characterize performance bottle-
necks at the kernel level but do not provide optimization sug-
gestions for specific code regions. In contrast, GPA analyzes
raw instruction samples along with metrics from instrumen-
tation, matches stalls with inefficiency patterns to suggest
optimizations, and estimates their benefits. Due to the lack of
hardware support in publically-available GPUs, Intel’s
VTune [34] andAMD’s ROCProfiler [35] don’t use instruction
sampling to analyze the performance of GPU kernels.

GPU vendors also provide instrumentation tools [10], [11],
[12], [13] to facilitate fine-grained performance measurement
and analysis. Based on these tools, researchers have used
instrumentation to detect certain kinds of inefficiencies. Arafa
et al. [36] collect a memory trace and build a performance pre-
diction model for a GPU’s cache hierarchy. GVProf [9] ana-
lyzes both temporal and spatial redundant value patterns in
GPU-accelerated applications. Each of these tools analyze
only a narrow class of problems and can’t accurately assess
their impact on performance due to the high overhead of
instrumentation. In comparison, GPA employs instruction
sampling to measure code hotness with minimal overhead
and uses instrumentation in a separate pass to collect instruc-
tion execution information for comprehensive analysis.

Performance advisor tools that examine code quality and
provide optimization suggestions have been extensively
studied on CPUs. PerfExpert [37] employs HPCToolkit [38]
to collect CPU performance metrics with sampling. Like
GPA, it combines the analysis of measurement data and sys-
tem parameters to estimate performance upper-bounds.
Built upon PerfExpert, AutoScope [39] ranks the optimiza-
tion suggestions and outputs the most effective ones. Unlike
the above tools that analyze profiles to derive performance
insights, there also exist tools that analyze only static code
patterns. MAQAO [40] performs static analysis of assembly
code to offer optimization suggestions with much lower
overhead than dynamic profiling based tools. CQA [41] is a
loop-centric tool that employs a static model to analyze
code quality and models instruction execution by emulating
processor pipelines. Egeria [42] adopts natural language

ZHOU ETAL.: AUTOMATED TOOL FOR ANALYSIS AND TUNING OF GPU-ACCELERATED CODE IN HPC APPLICATIONS 863

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

processing (NLP) to associate code transformation rules from
vendor optimization guides with inefficiencies reported by
profilers. Unlike Egeria, GPA attributes stalls to their root
causes and outputs optimizations at a hierarchy of scopes at
lines, loops, and functions.

7 CONCLUSION AND FUTURE WORK

The rise of GPU-accelerated supercomputers, including
forthcoming exascale systems, has created an urgent need to
improve programming models, compilers, performance
tools, and runtime systems to better support application
development and tuning for such platforms. Our GPA tool
bridges the gap between the discovery of GPU performance
bottlenecks and the identification of effective optimizations.
We show that GPA can identify a range of performance prob-
lems and then identify effective optimizations to ameliorate
these problems. At present, the lack of hardware support for
instruction-level performance measurement precludes retar-
geting GPA to Intel andAMDGPUs.

Currently, GPA has several limitations. First, GPA has high
measurement overhead for some applications. CUDA 11.3
introduced a new PC sampling mode with much lower over-
head. A prototype using this new sampling mode reduced
measurement overhead for Laghos [43] from 21� to 7�. We
plan to reduce the overhead of GPA’s hybrid mode by imple-
menting more efficient instrumentation callbacks. Second,
while adding parallelism to backward slicing improves its
speed, it also increases its memory footprint. At present,
Dyninst [44] performs backward slicing by analyzing effects of
individual instructions; it would be more space and time effi-
cient to use basic-block summaries, where appropriate. Third,
GPAdoes not support analysis of branch divergence andwarp
synchronization. We can leverage methods developed by
others [45] to enhanceGPA so that it can diagnose such issues.

In our experiments, we found that compilers are some-
timesmyopic in optimizing instruction schedules. NVIDIA’s
nvcc compiler only reorders instructions within a limited
scope based on heuristics. In some cases, reordering a few
program statements improves performance. Furthermore,
high level programming models, such as OpenMP, though
portable, lack critical features to match the performance of
native programming models, including explicit support for
using shared memory, asynchronous memory copies, and
fast math instructions. We believe that GPA provides a solid
foundation for feedback-based performance advisor/opti-
mizers on GPU-accelerated platforms that can be adapted as
new capabilites for instruction-based performance measure-
ment emerge. As future work, we are interested in exploring
howGPA’s insights can be used to drive profile-guided opti-
mization of GPU code.

ACKNOWLEDGMENTS

This research was supported in part by the Exascale Com-
puting Project (17-SC-20-SC)—a collaborative effort of the
U.S. Department of Energy Office of Science and the
National Nuclear Security Administration, Lawrence Liver-
more National Laboratory (Subcontract B639429), and an
ExxonMobil Graduate Fellowship. We thank Total E&P
Research & Technology USA, LLC for allowing us to use

Minimod as a case study. We thank Helen He (NERSC),
Mauro Del Ben (LBNL), and William Huhn (ANL) for their
help analyzing BerkeleyGW. We also thank the anonymous
reviewers of this article for their feedback, which helped us
significantly improve the article.

REFERENCES

[1] S. S. Vazhkudai et al., “The design, deployment, and evaluation of
the CORAL pre-exascale systems,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2018, pp. 661–672.

[2] NVIDIA Corporation, Profiler User’s Guide DU-05982–001_v11.2,
Dec. 2020. [Online]. Available: https://docs.nvidia.com/cuda/
pdf/CUDA_Profiler_Users_Guide.pdf

[3] NVIDIA Corporation, “NVIDIA nsight systems,” Accessed: Jan. 1,
2021. [Online]. Available: https://developer.nvidia.com/nsight-
systems

[4] NVIDIA Corporation, “NVIDIA nsight compute,” Accessed: Jan.
1, 2021. [Online]. Available: https://developer.nvidia.com/
nsight-compute

[5] K. Zhou, M. W. Krentel, and J. Mellor-Crummey , “Tools for top-
down performance analysis of GPU-accelerated applications,” in
Proc. 34th ACM Int. Conf. Supercomputing, 2020, Art. no. 26.
[Online]. Available: https://doi.org/10.1145/3392717.3392752

[6] S. S. Shende and A. D. Malony, “The TAU parallel performance
system,” The Int. J. High Perform. Comput. Appl., vol. 20, no. 2,
pp. 287–311, 2006.

[7] D. Mey et al., “Score-P: A unified performance measurement sys-
tem for petascale applications,” in Proc. Int. Conf. Competence High
Perform. Comput., 2012, pp. 85–97.

[8] C. January et al., “Allinea MAP: Adding energy and OpenMP pro-
filing without increasing overhead,” in Tools for High Performance
Computing. Berlin, Germany: Springer, 2015, pp. 25–35.

[9] K. Zhou, Y. Hao, J. Mellor-Crummey, X. Meng, and X. Liu,
“GVPROF: A value profiler for GPU-based clusters,” in Proc. Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2020, pp. 1–16.

[10] M. Kambadur et al.“Fast computational GPU design with GT-Pin,”
in Proc. IEEE Int. Symp.Workload Characterization, 2015, pp. 76–86.

[11] M. Stephenson et al., “Flexible software profiling of GPU
architectures,” ACM SIGARCH Comput. Architect. News, vol. 43,
no. 3, pp. 185–197, 2015.

[12] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A
dynamic binary instrumentation framework for NVIDIA GPUs,”
in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitect., 2019, pp.
372–383.

[13] NVIDIA Corporation, NVIDIA Compute Sanitizer DA-05679–
001_v11.2, Dec. 2020. [Online]. Available: https://docs.nvidia.
com/cuda/pdf/Compute_Sanitizer.pdf

[14] D. Shen et al., “CUDAAdvisor: LLVM-based runtime profiling for
modern GPUs,” in Proc. Int. Symp. Code Gener. Optim., 2018,
pp. 214–227.

[15] J. Dean, J. E. Hicks, C. A.Waldspurger,W. E.Weihl, andG. Chrysos,
“ProfileMe: Hardware support for instruction-level profiling on
out-of-order processors,” in Proc. 30th Annu. Int. Symp. Microarchi-
tect., 1997, pp. 292–302.

[16] P. J. Drongowski, “Instruction-based sampling: A new perfor-
mance analysis technique for AMD family 10h processors,” 2007.
Accessed: Aug. 30, 2021. [Online]. Available: https://developer.
amd.com/wordpress/media/2012/10/AMD IBS paperEN.pdf

[17] IBM Corporation, POWER9 Performance Monitor Unit User’s Guide,
version 1.2, Nov. 2018. [Online]. Available: https://ibm.ent.box.
com/s/8kh0orsr8sg32zb6zmq1d7zz6hud3f8j

[18] NVIDIA Corporation, “PC sampling,” Accessed: Jan. 1, 2021,
2019. [Online]. Available: https://docs.nvidia.com/cupti/Cupti/
r_main.html#r_pc_sampling

[19] H. Zhang and J. Hollingsworth, “Understanding the performance
of GPGPU applications from a data-centric view,” in Proc. IEEE/
ACM Int. Workshop Program. Perform. Vis. Tools, 2019, pp. 1–8.

[20] H. Zhang, “Data-centric performance measurement and mapping
for highly parallel programming models,” PhD dissertation,
Electr. Comput. Eng., Univ. Maryland, College Park, MD, 2018.

[21] J. Deslippe et al., “BerkeleyGW: A massively parallel computer
package for the calculation of the quasiparticle and optical proper-
ties of materials and nanostructures,” Comput. Phys. Commun., vol.
183, no. 6, pp. 1269–1289, 2012.

864 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://doi.org/10.1145/3392717.3392752
https://docs.nvidia.com/cuda/pdf/Compute_Sanitizer.pdf
https://docs.nvidia.com/cuda/pdf/Compute_Sanitizer.pdf
https://ibm.ent.box.com/s/8kh0orsr8sg32zb6zmq1d7zz6hud3f8j
https://ibm.ent.box.com/s/8kh0orsr8sg32zb6zmq1d7zz6hud3f8j
https://docs.nvidia.com/cupti/Cupti/r_main.html#r_pc_sampling
https://docs.nvidia.com/cupti/Cupti/r_main.html#r_pc_sampling

[22] K. Zhou, X. Meng, R. Sai, and J. Mellor-Crummey, “GPA: A GPU
performance advisor based on instruction sampling,” in Proc.
IEEE/ACM Int. Symp. Code Gener. Optim., 2021, pp. 115–125.

[23] R. Ohannessian Jr et al., “System, method, and computer program
product for implementing software-based scoreboarding,” US
Patent 9 612 836, Apr. 4, 2017.

[24] NVIDIA Corporation, “CUDA binary utilities,” Accessed: Feb. 1,
2021. [Online]. Available: https://docs.nvidia.com/cuda/cuda-
binary-utilities/index.html#instruction-set-ref

[25] NVIDIA Corporation, CUPTI User’s Guide DA-05679–001_v11.2,
2020. [Online]. Available: https://docs.nvidia.com/cuda/pdf/
CUPTI_Library.pdf

[26] C. Cifuentes and A. Fraboulet, “Intraprocedural static slicing of
binary executables,” in Proc. Int. Conf. Softw. Maintenance, 1997,
pp. 188–195.

[27] J. C. Phillips, Gengbin Zheng, S. Kumar, and L. V. Kale, “NAMD:
Biomolecular simulation on thousands of processors,” in Proc.
ACM/IEEE Conf. Supercomputing, 2002, pp. 36–36.

[28] Z. Jia et al., “Dissecting the NVIDIA Volta GPU architecture via
microbenchmarking,” 2018, arXiv:1804.06826.

[29] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload Characterization,
2009, pp. 44–54.

[30] Lawrence Livermore National Laboratory, “Quicksilver,”
Accessed: Jan. 1, 2021. [Online]. Available: https://github.com/
LLNL/Quicksilver

[31] D. I. Lyakh, “ExaTENSOR,” Accessed: Jan. 1, 2021. [Online].
Available: https://iadac.github.io/projects/

[32] NationalRenewableEnergyLaboratory, “PeleC,” Accessed: Jan. 1, 2021.
[Online].Available: https://github.com/AMReX-Combustion/PeleC

[33] J. Meng et al., “Minimod: A finite difference solver for seismic
modeling,” 2020, arXiv:2007.06048v1.

[34] J. Reinders, VTune Performance Analyzer Essentials. Santa Clara,
CA, USA: Intel Press, 2005.

[35] Advanced Micro Devices, Inc., “AMD ROCm ROCProfiler,”
[Online]. Available: https://rocmdocs.amd.com/en/latest/
ROCm_Tools/ROCm-Tools.html

[36] Y. Arafa et al., “Fast, accurate, and scalable memory modeling of
GPGPUs using reuse profiles,” in Proc. 34th ACM Int. Conf. Super-
computing, 2020, Art. no. 31. [Online]. Available: https://doi.org/
10.1145/3392717.3392761

[37] M. Burtscher, B. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne, “PerfExpert: An easy-to-use performance diagnosis
tool for HPC applications,” in Proc. ACM/IEEE Int. Conf. High Per-
form. Comput. Netw. Storage Anal., 2010, pp. 1–11.

[38] L. Adhianto et al., “HPCToolkit: Tools for performance analysis of
optimized parallel programs,” Concurrency Comput.: Pract. Experi-
ence, vol. 22, no. 6, pp. 685–701, 2010.

[39] O. A. Sopeju et al., “AutoScope: Automatic suggestions for code
optimizations using PerfExpert,” in Proc. Int. Conf. Parallel Distrib.
Process. Techn. Appl., 2011.

[40] L. Djoudi et al., “MAQAO: Modular assembler quality analyzer
and optimizer for itanium 2,” in Proc. 4th Workshop EPIC Architec-
tures Compiler Technol., 2005, vol. 200.

[41] A. S. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and
G. Lartigue, “CQA: A code quality analyzer tool at binary level,” in
Proc. 21st Int. Conf. High Perform. Comput., 2014, pp. 1–10.

[42] H. Guan et al., “Egeria: A framework for automatic synthesis of
HPC advising tools through multi-layered natural language proc-
essing,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2017, pp. 1–14.

[43] V. A. Dobrev, T. V. Kolev, and R. N. Rieben, “High-order curvilin-
ear finite element methods for lagrangian hydrodynamics,” SIAM
J. Sci. Comput., vol. 34, no. 5, pp. B606–B641, 2012.

[44] U. of Wisconsin-Madison, “Dyninst,” Accessed: Jan. 1, 2021.
[Online]. Available: https://github.com/dyninst/dyninst

[45] S. Damani et al., “Speculative reconvergence for improved SIMT
efficiency,” in Proc. 18th ACM/IEEE Int. Symp. Code Gener. Optim.,
2020, pp. 121–132.

Keren Zhou (Member, IEEE) received the MS
degree in computer science from the Institute of
Computing Technology, Chinese Academy of Sci-
ences, Beijing,China, in 2017. He is currently work-
ing toward the PhD degree at Rice University,
Houston, Texas. His research interests include per-
formance tools for HPC applications. He is a recipi-
ent of a 2020 ACM-IEEE CS George Michael
Memorial HPCFellowship.

Xiaozhu Meng received the PhD degree in com-
puter science from the University of Wisconsin-
Madison, Madison, Wisconsin, in 2018. He is cur-
rently a research scientist in the Department of
Computer Science, Rice University, Houston
Texas. His research interests include binary code
analysis and instrumentation, and its applications
in high-performance computing and computer
security.

Ryuichi Sai received the MS degree in computer
science from the University of Houston, Houston,
Texas, in 2012. He is currently working toward the
PhD degree at Rice University, Houston, Texas. His
research interests include programming lan-
guages, compiler technologies, and their applica-
tions in high-performance computing.

Dejan Grubisic received the MS degree in com-
puter science from the University of Novi Sad, Ser-
bia, in 2019. He is currently working toward the
PhD degree at Rice University, Houston, Texas. His
research interests include measuring and analysis
of the performance of HPC applications. He was
the recipient of Pollard fellowship, in 2019.

John Mellor-Crummey received the PhD degree
in computer science from the University of
Rochester, Rochester, New York, in 1989. He is
currently a professor of computer science at Rice
University, Houston, Texas. His research interests
include software technology for high-performance
parallel computing, including compilers, runtime
systems, tools, and synchronization. He is a co-
recipient of the 2006 Dijkstra Prize in Distributed
Computing and a fellow of the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHOU ETAL.: AUTOMATED TOOL FOR ANALYSIS AND TUNING OF GPU-ACCELERATED CODE IN HPC APPLICATIONS 865

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 10,2021 at 03:10:57 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf
https://github.com/LLNL/Quicksilver
https://github.com/LLNL/Quicksilver
https://iadac.github.io/projects/
https://github.com/AMReX-Combustion/PeleC
https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html
https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html
https://doi.org/10.1145/3392717.3392761
https://doi.org/10.1145/3392717.3392761
https://github.com/dyninst/dyninst

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

