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Abstract—As a crucial task in heterogeneous distributed systems, DAG-scheduling models a scheduling application with a set of

distributed tasks by a Direct Acyclic Graph (DAG). The goal is to assign tasks to different processors so that the whole application can

finish as soon as possible. Task Duplication-Based (TDB) scheme is an important technique addressing this problem. The main idea is

to duplicate tasks on multiple machines so that the results of the duplicated tasks are available on multiple machines to trade

computation time for communication time. Existing TDB algorithms enumerate and test all possible duplication candidates, and only

keep the candidates that can improve the overall scheduling. We observe that while a duplication candidate is ineffective at the

moment, after other duplications have been applied, this ineffective duplication candidate can become effective, which in turn can

cause other ineffective duplications to become effective. We call this phenomenon the chain reaction of task duplication. We propose a

novel Task Duplication based Clustering Algorithm (TDCA) to improve the schedule performance by utilizing duplication task more

thoroughly. TDCA improves parameter calculation, task duplication, and task merging. The analysis and experiments are based on

randomly generated graphs with various characteristics, including DAG depth and width, communication-computing cost ration, and

variant computation power of processors. Our results demonstrate that the TDCA algorithm is very competitive. It improves the

schedule makespan of task duplication-based algorithms for heterogeneous systems for various communication-computing cost ratios.

Index Terms—Task duplication, clustering and merging, optimal scheduling, heterogeneous environment

Ç

1 INTRODUCTION

PARALLEL and distributed computing are prevalent as the
scales and complexities of applications are growing rap-

idly. Applications such as numerical weather prediction,
and image processing consume various computing resour-
ces, including CPU/GPU, network bandwidth, and mem-
ory. A distributed computing system needs a scheduler to
effectively allocate these resources to different applications,
such that applications can complete as early as possible and
computing resources are fully utilized.

Scheduling in a distributed system has been a major
research topic due to its importance and difficulty. Different
applications may have diverse requirements on computing
resources (CPU-intensive or IO-intensive) and various goals
(fairness[1], low latency, or high throughput, or real time [2]),
making a scheduler difficult to balance all these factors. In
general, optimal task scheduling is NP-hard. Thus, various

heuristics are proposed to address the need of particular
application scenarios. For example, the tasks may arrive at
different time periods, representing a dynamic scheduling
problem [3]; the tasks may also have requirements on mem-
ory, network bandwidth or disk space, representing a
bounded-resource scheduling problem [4]; the scheduler
may also need to provide fairness to all applications or
improve resource utilization, representing a multi-objective
optimization problem [5]. This paper focuses on the Directed
Acyclic Graph Scheduling (DAG-scheduling), which serves
as a foundation for designing scheduling algorithms in more
complicated scenarios [6], [7], [8].

DAG scheduling can be classified into the static task
scheduling problem [9], [10], [11]. That is, the structure of the
application in terms of its task execution times, task depen-
dencies and communication cost is known a priori, and the
scheduling can be accomplished statically at compile-time.
The DAG model abstracts a distributed application as multi-
ple tasks, where a node in the graph represents a task and an
edge represents the execution dependency between two
tasks. There are a certain number of processors available to
schedule these tasks. We also know the execution time of
each task on each processor and the communication time
between each pair of dependent tasks if they are allocated to
different processors. The goal is to assign all tasks to process-
ors in order to minimize the completion time of the whole
application.

The problem of DAG scheduling has been extensively
studied [12]. Early works focus on homogenous computing
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environment such as distributed memory machines [13],
[14], [15], [16], and recent works pay more attention on het-
erogeneous systems [17], [18], [19], [20]. Emerging architec-
ture, GPU clusters, are also considered for dense linear
algebra computation [21], [22]. Other problem variants
include multiple DAGs scheduling [23], hierarchical DAG
scheduling [21], stochastic tasks scheduling [24], etc.

For the DAG scheduling techniques, existing algorithms
can be classified into three categories, list scheduling [9], [25],
[26], [27], cluster-based scheduling [13], [28], [29] and task
duplication-based scheduling [30], [31]. And some research-
ers have combined task duplicationwith either list scheduling
or clustering scheduling to improve the performance [12],
[32]. We find that there are two limitations for typical DAG
scheduling algorithms. These algorithms rely on key parame-
ters, for example the earliest starting time est. But the calcula-
tion of these parameters may be not accurate, leading to a
scheduling with suboptimal quality. Second, in existing algo-
rithms, once a task duplication candidate has been evaluated
to be ineffective, it will no longer be considered. In our experi-
ments shown in Section 4, however, we observe that an inef-
fective duplication may become effective again after other
duplications have been performed.

In this work, we propose a novel algorithm, called the
Task Duplication based Clustering Algorithm (TDCA), to
effectively perform task duplication and improve the sched-
uling quality. TDCA first calculates a set of key parameters
with our improved definitions and generates initial task
clusters. A task duplication strategy is adopted to modify
the initial clusters and new clusters are added when neces-
sary. Then, TDCA merges the clusters to shorten the make-
span and reduce the number of occupied processors. In the
end, we adopt a task insertion scheme introduced in DCPD
[33], which inserts a task to an idle time slot located before
its successor task if this insertion could make the successor
start earlier. This insertion scheme allows TDCA to generate
the optimal solution of makespan 8.0 on the classic EZ
benchmark, while the optimal makespan of EZ is regarded
as 8.5 in the literature [11]. Note that by default these
claims are for plenty of homogeneous resources, and three
machines are sufficient for the EZ benchmark.

TDCA contains three main improvements over existing
algorithms.

� New definitions for key parameters. We redefine several
key parameters. For example as compared with our
baseline algorithm TANH [34], when defining est,
we ignore the communication cost if the task and its
predecessor are on the same processor, which yields
a more accurate est.

� Improving the initial clustering. When producing ini-
tial task clusters, existing algorithms typically dupli-
cate the predecessors of a task. On the other hand,
TDCA will also consider waiting for transferring the
results of a predecessor task from other clusters,
which may improve the quality of the initial clusters.

� Consideration of the chain reaction. In the task duplica-
tion phase, existing algorithms try a list of duplication
candidates, applying the candidates that improve the
overall scheduling and abandoning the candidates
that does not improve the overall scheduling. We

identify the chain reaction phenomenon where an
ineffective duplication may become effective after
other duplications have been applied.

We compare TDCA with three state-of-the-art algorithms,
TANH [34], HEFT [19] and DCPD [33]. A random DAG gen-
erator is designed to cover different types ofDAGs to evaluate
how the proposed algorithm fares. We thoroughly investi-
gated the impact of different DAGproperties, including num-
ber of nodes, communication-computing cost ratio (CCR),
number of layers, and heterogeneity of the processors. Experi-
ments on small instances as well as large instances with up to
3000 tasks demonstrate that TDCA can provide more optimi-
zation opportunities.

The paper is organized as follows. In Section 2, we dis-
cuss the background of this work. The detail of the pro-
posed TDCA is presented in Section 3. Experimental results
and analysis are illustrated in Section 4, and conclusion
remarks in Section 5.

2 BACKGROUND

In this section, we first present the formal definition of the
DAG scheduling problem, then briefly summarize existing
DAG scheduling algorithms, with the focus on the seminal
work of TANH [34], which is the base of our proposed
Task-Duplication based Clustering Algorithm (TDCA).

2.1 Problem Definition

Assume there are a certain number of heterogeneous pro-
cessors available to parallel perform computations and com-
munications. There are a set of tasks required to be assigned
to the available processors, with each task being an indivisi-
ble unit of non-preemptive work. Given the precedence con-
straints among the tasks, the computation cost of a task on
each processor and the communication cost between any
two tasks subjected to precedence constraints, the problem
is to schedule the tasks on processors to minimize the make-
span, defined as the latest completion time of all tasks
minus the earliest starting time of all tasks. A feasible sched-
ule should satisfy the following constraints:

1) Constraints on tasks: All tasks should be assigned and
executed on at least one processor. All the tasks are
atomic, meaning that none of them can be inter-
rupted during the execution.

2) Constraints on communication: For any pair of tasks
subjected to the precedence constraint, the successor
cannot start until the predecessor has finished and
the resulting data of the predecessor has been trans-
ferred to the successor. The transferring time is the
communicating cost annotated on the edge between
the two tasks in the DAG if these two tasks are not
assigned to the same processor, and otherwise 0.

3) Constraints on processors: Processors can only run
tasks serially, indicating that the execution of any
two tasks on the same processor cannot overlap.

We use a DAG G ¼ hV;E; P; T; Ci to formalize the prob-
lem. 1) V ¼ f1; 2; . . . ; ng is the set of nodes that represents
the tasks. n 2 N is the number of tasks. 2) E ¼ fhi; ji : i; j 2
V g is the set of edges, representing the precedence con-
straints. e ¼ jEj 2 N indicates the number of edges. 3)
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P ¼ f1; 2; . . . ;mg represents the set of available processors,
and m 2 N indicates the number of processors. 4) T , a two-
dimensional n�m matrix, stands for the computation costs
of the nodes. For i 2 V and p 2 P , T ði; pÞ is the computation
time of task i if it is assigned to processor p. 5) C, a two-
dimensional n� n matrix, represents the communication
costs. For i 2 V; j 2 V and hi; ji 2 E, Cði; jÞ is the time
needed to transfer data from i to jwhen i and j are assigned
to different processors.

For convenience, we denote PREDðiÞ ¼ fj : hj; ii 2 Eg as
all predecessor tasks of i and denote SUCCðiÞ ¼ fj : hj; ii 2 Eg
as all successive tasks of i. If there is more than one entry-
node, we add one pseudo entry-node connecting to these
entry-nodes. One pseudo exit-node is added in a similar
way. Note that the pseudo entry-node and the pseudo exit-
node have zero running time on any processor, and the
weights of edges connecting the pseudo nodes and the
actual start or end nodes are zero.

In practice, partition algorithms [11], [18] are used to
transform real-world applications to DAG representations.
A DAG is usually assumed to be fully connected [11], [18].
We could also assign a sufficiently large communication
cost to certain entries in C if the network is not fully con-
nected [2], [3], [25]. Note that our definitions are suitable for
heterogeneous systems, where processors may have differ-
ent computing power, so that a task may have varied run-
ning time on different processors.

2.2 DAG Scheduling Algorithms

We discuss in detail three main categories of the DAG-
scheduling algorithms: list scheduling [35], cluster-based
scheduling [12], and task duplication-based scheduling [30].
We also discuss a few hybrid algorithms that combine list
scheduling with task duplication or combine cluster-based
scheduling with task duplication.

List scheduling algorithms generate a task list sorted by the
priority of the tasks, which are then sequentially assigned to
processors. Variations of such algorithms differ in themethod
of how to define priorities or how to assign tasks to process-
ors [35]. Themain idea of list scheduling is to calculate a prior-
ity for each task and then assign tasks with higher priorities
first to processors. K. Shin et al. [32] defined three types of
task priority, namely S-Level, T-Level and B-Level. S-Level,
also called static level, is the length of the longest path from
the current node to the exit-node without considering the
communication cost among tasks. B-Level, also known as bot-
tom level or downward rank, computes the longest path from
the current node to the exit-node considering communication
cost. T-Level, namely top level or upward rank, is the length
of the longest path from the entry-node to the current node
including the communication cost. A weighted average of
these three types of priority is used to get a better priority defi-
nition [1]. Another type of ranking techniques, called critical
path based ranking, assign tasks on a critical path higher pri-
orities. The intuition is that if these critical tasks were post-
poned, it might delay the entire application. HEFT [19] and
PEFT [20] use critical path based rankingmethods. List sched-
uling algorithms are simple to implement, but their solutions
are often not as good as the other two types of scheduling
algorithms.

Clustering-based algorithms first group the tasks into
task clusters and then assign clusters to distinct processors
in order to reduce the communication cost [12]. After the
initial cluster assignment, clusters may be further merged
to reduce the communication cost. The essence of this
method is to cluster highly related tasks onto the same
processor that communication cost among themselves
becomes negligible. If the available number of processors
is larger than the number of clusters, their solutions can be
very efficient.

Task duplication based algorithms duplicate a task when
necessary and assign them to different processors. Therefore,
the results of duplicated tasks are readily available on multi-
ple processors, which may help reduce the communication
cost. See details in a survey paper [30]. The main idea behind
thismethod is to utilize processor idling time to duplicate pre-
decessor tasks. This may avoid transfer of results from a pre-
decessor through a communication channel.

Hybrid algorithms combine task duplication with either
list scheduling or clustering scheduling [9], [18], [27], [33].
To perform task duplication in list scheduling, existing algo-
rithms, such as LDCP [9], HEFD [27], and DCPD [33], often
duplicate the predecessor tasks to reduce communication
costs. For cluster-based scheduling, such as TDS [18] and
TANH [34], task duplication can be performed by allowing
an individual task to be assigned to several clusters, which
could reduce the communication costs among clusters. Our
proposed algorithm belongs to the latter type.

Regardless of the algorithm categories, one common
issue is to determine in which order to execute the tasks
that have been assigned to the same processors. Two com-
monly used types of methods are the insertion based
method, such as the one used in HEFT [19], and non-
insertion based method. Insertion based methods often pro-
duce better scheduling because they can make use of poten-
tial idle time slots on processors. Suppose that two tasks are
scheduled serially on a processor. The latter task may not be
able to start running right after the completion of the prior
one, because the latter task may have to wait for the comple-
tion of other predecessor tasks to get relevant output data.
The gap between the two tasks is called an idle time slot.
Insertion based methods may insert other tasks to these idle
slots to take full advantage of the processors, and thus are
more effective. On the other hand, non-insertion based
methods are simpler to implement as there is no need to
track these idle slots. Our proposed algorithm would adopt
an insertion based method to improve scheduling effi-
ciency. HEFT [19] first calculates the task priority according
to the B-level, sorts the tasks in non-descending order, and
assigns tasks to a processor such that it has the earliest start-
ing time for an initial allocation. HEFT also considers the
task insertion scheme.

DCPD [33] dynamically calculates the task priority bas-
ing on B-level, T-level and the task computation cost. It
gives higher priority to tasks with larger computation cost,
longer path to the exit node, and shorter path to the entry-
node. The set of unassigned tasks are classified into ready
set, partially ready set and unready set. At each iteration, it
assigns tasks in the ready set to a processor such that they
have the earliest end time. Then, it duplicates the critical
predecessor task if the copy makes the predecessor start
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earlier. Also, it recalculates the priorities of the unassigned
tasks and update the three sets.

2.3 Analysis of TANH

We give a brief description of the TANH algorithm [34], on
which we base our proposed algorithm TDCA. TANH has
three main steps:

1) Parameter calculation: TANH computes the parameters
in two stages. First, it calculates the following parame-
ters for each node i in the topological order from the
entry node to the exit node: the earliest starting time
estðiÞ, the earliest completion time ectðiÞ, favorite pro-
cessors fprocði; 1Þ to fprocði;mÞ, favorite predecessor
fpredðiÞ and B-level levelðiÞ. Second, it calculates the
following parameters for each node i in the reverse
topological order from the exit node to the entry node:
the latest allowable starting time lastðiÞ and the latest
allowable completion time lactðiÞ.

2) Initial cluster generation: Tasks are sorted by the level
parameter in the non-decreasing order. At each time,
TANH chooses the first unassigned task and add it
to a new cluster. Suppose TANH is generating a clus-
ter for task i. TANH iteratively adds one of predeces-
sor task of i into the cluster (in most case, the added
task is i’s favorite predecessor fpredðiÞ), until the
entry node is added into the cluster. The whole clus-
ter is assigned to the first unoccupied processor p,
searching in the order from fprocði; 1Þ to fprocði;mÞ.
If all processors are occupied, this cluster is assigned
to a pseudo processor where the runtime of a task is
taken as the average runtime of the task.

3) Task duplication or cluster merging: If clusters are
assigned to pseudo processors in the previous step,
TANH performs cluster merging in this step. It
merges a cluster with a large task computation cost
to a cluster with a small task computation cost, hop-
ing that the merged cluster will only have a small
increase in computation cost. The merging process
continues until all pseudo processors are merged.
On the other hand, if no clusters are assigned to
pseudo processors in the previous step, TANH
tries task duplication. Specifically, suppose task set
fx1; x2; . . . ; xkg has been assigned to processor p and
fx1; x2; . . . ; xkg are in topological order in the corre-
sponding DAG. For i � k, TANH may tentatively
move task x1 to xi�1 to another processor q, which is
the first unoccupied processor in the order from
fprocðxi�1; 1Þ to fprocðxi�1;mÞ, and add fpredðxiÞ,
fpredðfpredðxiÞÞ; . . . up to the entry-node to p. There-

after, TANH computes the makespan of the new
schedule, and it would nullify the above change in
case the makespan becomes larger.

While TANH has been shown to be effective in its experi-
ments, we have identified three limitations of TANH that
can be improved.

First, definitions of several parameters are rather loose.
For example, in our experiments, we have encountered sit-
uations where lact are negative for some DAGs. These loose
parameter definitions may lead to inappropriate decisions
on task duplications and sub-optimal schedule.

Second, in the initial cluster generation step, TANH
always keeps adding nodes to a cluster until the entry-node
is added. However, it is possible that for some task i, there
is no need to add any predecessor of i to the cluster, since it
could use the computation results from other processors.
Our experiments showed that always adding nodes to one
cluster until the entry-node may lead to unnecessary dupli-
cation, especially when the computation costs are larger
than the communication costs.

Third, in the task duplication step of TANH, it does not
show the exact order of the positions of performing task
duplication. In experiments, we found that duplications con-
ducted in different order may lead to various schedules and
the schedulesmay have significantly differentmakespans.

3 PROPOSED ALGORITHM

Wedescribe the details of the TaskDuplication based Cluster-
ing Algorithm (TDCA) in this section. The proposed algo-
rithm includes several key parameters and four phases. In the
first phase, TDCA assigns tasks to processors to construct the
initial clusters. A task duplication method is used to modify
the initial clusters in order to shorten themakespan in the sec-
ond phase. In the third phase, TDCAmerges some clusters to
obtain a preliminary schedule. And an insertion phase is
added to utilize the idle time slot so as to further reduce the
makespan. One key difference between TDCA and TANH is
that TDCA uses both task duplication and cluster merging to
reduce the makespan, while TANH only applies one of the
two depending on the relationship between the number of ini-
tial clusters and the number of available processors. We also
use a DAG example to illustrate the running trace of TDCA.
We conclude this section with a complexity and scalability
analysis of TDCA.

3.1 Definitions

We redefine many parameters used in TANH [34] to better
approximate their values, such as the earliest starting time
est and the earliest completion time ect. In addition, we
define the critical predecessor trail of a task to improve the
task duplication phase.

Definition 1. Communication Cost. For j 2 PREDðiÞ, if j and
i are assigned to processor q and p respectively, then the com-
munication cost between the two tasks:

d j; i; q; pð Þ ¼ 0; q ¼ p
C j; ið Þ; q 6¼ p

�
hj; ii 2 E: (1)

Definition 2. Earliest Starting Time. For i 2 V and p 2 P ,
est i; pð Þ indicates the earliest starting time of task i if i is
assigned to processor p. estði; pÞ can be formulated as follows:
estði; pÞ ¼ 0 for the entry node, and otherwise:

estði; pÞ ¼ max
j2PREDðiÞ

n
min
q2P

�
ectðj; qÞþdðj; i; q; pÞ�o: (2)

Here we use a max and min combination except the
entry-node. If task i runs on processor p, the outer max indi-
cates that all its predecessor tasks must have finished the
computation somewhere and have sent the resulting data
that i needs to processor p. From the outer max, we could
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tell which predecessor blocks task i. On the other hand,
since each predecessor of task i could be assigned to any
processor in P , the inner min tells which processor is the
best choice for predecessor j such that its resulting data
could reach processor p as early as possible.

This definition yields a naivemethod to compute estwith a

complexity of OðjEjjP j2Þ ¼ Oðem2Þ. But we can actually

reduce the complexity toO Ej j Pj jð Þ ¼ O em2ð Þ. The key obser-

vation is that we do not have to enumerate every processor q

to determine the minimum. Since for any j, ectðj; fprocðj; 1ÞÞ
is always the minimum over all ect j; qð Þ. So we only need
to find the smaller one between ect j; pð Þ and ect j; fproc j;ðð
1ÞÞ þ C j; ið Þ.

Therefore, we could simplify the definition and reduce
the complexity of computing est from OðjEjjP j2Þ to O Ej j Pj jð Þ:
estði; pÞ ¼ 0 for the entry node, and otherwise:

estði; pÞ ¼ max
j2PREDðiÞ

n
minfectðj; fprocðj; 1ÞÞ þ Cðj; iÞ;

ectðj; pÞg
o
:

(3)

Definition 3. Earliest Completion Time. For i 2 V and p 2 P ,
ect i; pð Þ is the earliest completion time of task i on processor p.
We define ectði; pÞ to be estði; pÞ plus the computation cost of
task i on processor p:

ectði; pÞ ¼ estði; pÞ þ T ði; pÞ: (4)

Definition 4. The rth Favorite Processor. For i 2 V and integer
r 2 ½1;m�, fprocði; rÞ is the rth favorite processor of task i,
which satisfies the following inequality:

ectði; fprocði; 1ÞÞ � � � � � ectði; fprocði; rÞÞ: (5)

Note that this definition implies that we can calculate
fprocðiÞ by first calculating all ect and then sorting them in
non-decreasing order.

Definition 5. Critical Predecessor. For i 2 V , cpredðiÞ is the
critical predecessor of task i and represents the bottleneck prede-
cessor that prevents estðiÞ from being smaller. Specifically,
assuming all tasks are assigned to the favorite processors,
cpredðiÞ is the last predecessor that sends its results to task i.

cpredðiÞ ¼ argmax
j2PREDðiÞ

n
ectðj; fprocðj; 1ÞÞ

þ dðj; i; fprocðj; 1Þ; fprocði; 1ÞÞ
o
: (6)

Our definition for cpredðiÞ makes improvement on
fpredðiÞ of TANH in the way that if fprocðj; 1Þ is the same
as fprocði; 1Þ, we actually do not involve the communication
cost between the two tasks.

Definition 6. Task Priority. We use the B-Level [32] as the task
priority. The task priority levelðiÞ for i 2 V is the length of the
longest path from i to the exit-node in a graph where the weight
of node i is the maximum computation cost of i among different
processors, and the weight on the edge is the communication cost:

levelðiÞ ¼ max
k2SUCCðiÞ

flevelðkÞ þ Cði; kÞg þmax
q2P

ðT ði; qÞÞ: (7)

Definition 7. Critical Predecessor Trail. The critical predecessor
trail of a task i is defined as cpredðiÞ, cpredðcpredðiÞÞ, . . ., up
to the entry-node.

Intuitively, the critical predecessor trail represents the
tasks that may prevent task i from starting earlier. It is used in
the task duplication phase to determine which task to dupli-
cate. est, ect, fproc and cpred are calculated in the topological
order of the DAG, and level is calculated in the reverse order.
Note that we give different definitions on est and cpred.
Though ect and fproc share the same definitions of TANH,
different est leads to distinct ect and fproc. Note that we do
not use last and lact in TDCA. Only level is exactly the same
in both TDCA and TANH.

3.2 Initial Task Clustering

After the calculation on the above parameters, tasks are
sorted by their levels in non-decreasing order. TDCA starts
to construct the initial clusters. Iteratively, TDCA chooses
several tasks and assigns them to the best unoccupied pro-
cessor. Our task clustering step makes three key improve-
ments over the task clustering step of TANH.

1) If there are more than one predecessors for node i, and
j ¼ fpredðiÞ has not been assigned, TANH just assigns
j to the processor p of node i, while TDCA further
checkswhether j satisfy the following inequality:

ect j; pð Þ � ect j; fproc j; 1ð Þð Þ þ C j; ið Þ: (8)

If the above inequality fails, we can predict that
allocating j on p is less promising than assigning j to
its favorite processor and just waiting for the mes-
sage passing from j to i.

2) If j ¼ cpredðiÞ is not selected to be in the same cluster
of i, i.e., when inequality (8) fails for cpredðiÞ, instead
of choosing a predecessor that has the lowest run-
ning time on p, we choose an unassigned predeces-
sor k that inequality (9) holds.

ect k; pð Þ � ect k; fproc k; 1ð Þð Þ þ C k; ið Þ: (9)

If there aremultiple predecessors satisfying inequal-
ity (9), we then choose the oneminimizing ectðk; pÞ.We
make the change in order to help i start as early as
possible.

3) TANH ends the iteration of task clustering when it
reaches the entry-node,while TDCAuses another con-
dition to stop the task clustering. If j ¼ cpredðiÞ fails to
be selected to the same processor, and TDCA cannot
find any unassigned predecessor that inequality (9)
holds, then it terminates the current clustering.

The details of task clustering are presented in Algorithm 1.
We make two comments on this algorithm. First, the inequal-
ity introduced above cannot predict accurately whether j is
beneficial for i, since ect itself is only an estimation and
fprocðj; 1Þ may be occupied by other tasks. However, experi-
ments in Section 4 demonstrate that it is a good estimation.
Second, when the number of tasks n is much larger than the
number of processors m, it is possible that there will be no
unoccupied processor for unassigned tasks. In such case, we
stop the task clustering producer and assign each unassigned
task to a processor that minimizes the starting time of the
unassigned task, based on the current assignment.
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3.3 Task Duplication

In the task duplication phase, we enumerate processors from
1 to m and check every candidate position described as fol-
lows. Let Xp ¼ x1; x2; . . . ; xkð Þ be the tasks x1; x2; . . . ; xk

assigned on processor p and they are in topological order in
the corresponding DAG. We find a candidate position in the
following order.

1) We first check whether there exists an i such that
cpredðxiÞ 6¼ xi�1, where i 2 ½2; k�. If so, task duplica-
tion will be conducted between xi and xi�1.

2) Then we check whether x1 ¼ entry� node . If not,
further task duplication is conducted for the prede-
cessor trail of x1.

Algorithm 1. Task-clustering Procedure

1: Put all tasks into the task array in the non-decreasing order
of their levels;

2: for every i in the task array do
3: If task i has been assigned continue
4: curProc = first unoccupied processor in
5: fprocði; 1Þ; . . . ; fprocði;mÞ;
6: Assign task i to processor curProc;
7: Status of task i ¼ assigned;
8: while i 6¼ entry� node do
9: j ¼ cpredðiÞ;
10: if in� degreeðiÞ > 1 and (j has been assigned
11: or ectðj; curProcÞ > ectðj; fprocðj; 1ÞÞ þ Cðj; iÞÞ then
12: Find k, an unassigned predecessor of i that inequal-

ity (9) holds
13: and minimizes ectðk; curProcÞ and set j ¼ k;
14: if k not exists break
15: end if
16: Add task j to processor curProc;
17: Status of task j ¼ assigned;
18: i ¼ j;
19: end while
20: Set processor curProc occupied;
21: end for

In the first case, TDCA is similar to that of TANH. x1 to
xi�1 will be moved to another processor q, which is the first
unoccupied processor in the order from procðxi�1; 1Þ to
fprocðxi�1;mÞ and the predecessor trail of xi will be added
to p. In the second case, we do not need to move any tasks.
Instead, we directly add the predecessor trail of x1 to p.
Then, we compute the makespan of the new schedule and
accept if the makespan is shortened. Thereafter, we will try
to find the next position to conduct the duplication.

We repeat the above process for K times. The reason for
the repetition is explained below and the effectiveness will
be justified in Section 4. Empirically, we found that K ¼ 4
works well in our experiments. The details of the task dupli-
cation are shown in Algorithm 2.

Note that the order we apply task duplication to candidate
positions may affect the schedule, where different orders
might result in different makespans. Most studies do not
directly address this issue. For example, Baskiyar and
Dickinson [4] proposed a strategy toduplicate bottleneck tasks
that would delay the execution of exit-node, but they did not
specify the order if there existmultiple bottleneck tasks.

With experiments, we observe an important fact that pre-
vious invalid duplication can become effective again after
other duplication has been applied, hence a replication
chain would be involved in the whole task duplication pro-
cedure. In Section 4, we will give a comprehensive analysis
on the phenomenon of replication chains and justify that
four times of iterations (K ¼ 4) are appropriate to benefit
most.

Algorithm 2. Task-Duplication Procedure

1: for iterNum from 1 toK do
2: for processor p from 1 tom do
3: for i from Xp

�� �� to 2 do
4: ifXpði� 1Þ 6¼ cpres Xp ið Þ� �

then
5: Find a candidate position for task duplication
6: if there exists unoccupied processor then
7: nextProc = first unoccupied processor in
8: fprocðxi�1; 1Þ to fprocðxi�1;mÞ
9: else
10: nextProc = fprocðxi�1; 1Þ
11: end if
12: Copy current schedule sch to newSch;
13: In newSch, moveXpð1; 2; . . . ; i� 1Þ to nextProc;
14: Add predecessor trail ofXpðiÞ to p in newSch;
15: IfmakespanðnewSchÞ � makespanðschÞ
16: sch ¼ newSch;
17: end if
18: end for
19: ifXpð1Þ 6¼ entry� node then
20: Copy current solution schedule to newSch;
21: Do the same operations from line 9 to line 11 for

Xpð1Þ;
22: end if
23: end for
24: end for

3.4 Processor Merging

In the third phase, we try to merge clusters to see if the make-
span could be further reduced. Such kind of process is useful,
as shown in the DAG example of Fig. 1a. There are two avail-
able processors, where the computation cost is 1 on p1 and
1000 on p2 for all the tasks. It is obvious that the optimal solu-
tion should be scheduling tasks on processor p1 and no tasks
on processor p2. However, TANH does not output this opti-
mal schedule, as any processor can only hold either task 2 or
task 3. This example suggests that when processor model is

Fig. 1. A DAG example and the TANH schedule.
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strongly heterogeneous, TANH is unlikely to produce high
quality solutions.

Consider two candidate methods for the merging phase.
Suppose x is the last task processed on processor p and
p ¼ fprocðx; rÞ. One way is trying to merge fprocðx; rÞ with
fprocðx; 1Þ; fprocðx; 2Þ; . . . ; fprocðx; r� 1Þ respectively and
choose the best among them involving the original schedule.
The other way is only trying to combine fprocðx; 1Þ and
fprocðx; rÞ. The former is certainly no worse than the latter,
but it takesmuch longer time.

Therefore, we adopt the second merging strategy: enu-
merate each processor and consider the last task x assigned
on this processor, try to merge with fprocðx; 1Þ. As there still
exist replication chains similar to that in the duplication
phase, we repeat the above merging procedure for K times.
The algorithm for the processor merging is as follows:

Algorithm 3. Processor-Merging Procedure

1: repeat
2: for every processor p from 1 tom do
3: Copy the current schedule sch to newSch;
4: x = the last task on processor p;
5: Merge tasks on j to processor fprocðx; 1Þ in newSch;
6: ifmakespanðnewSchÞ < makespanðschÞ
7: sch ¼ newSch;
8: end for
9: until the above for-loop forK times

3.5 Task Insertion

Finally, we adopt a strategy of task insertion to further
reduce the makespan:

For each edge hi; jiwhere task i and j are assigned to dif-
ferent processors pi and pj, we try to insert i before j on pj if
this insertion makes j start earlier. In addition, we remove i
(except the exit-node) on pi if i has no outgoing edges on pi.

To show the necessity of this phase, we use an example
of a classic homogeneous task scheduling benchmark,
denoted as EZ [11], as shown in Fig. 2a. The computation
cost of each task is shown in the node and the edges repre-
sent communication costs. We have tasks T1 to T7 with task
computation cost marked in the nodes and communication
cost marked on the edges. After the first three phases, the
schedule of TDCA is as shown in Fig. 2b. In the task inser-
tion phase, we duplicate T6 on processor P2 and insert T6

between T2 and T7 on processor P1, as shown in Fig. 2c, and
output a schedule of makespan 8.0. The optimal makespan
of EZ has been 8.5 [11]. We can prove that optimal make-
span of EZ is 8. Here all claims are for sufficient homoge-
neous machines, which is three in the EZ case.

Lemma 1. The optimal schedule of EZ is of makespan 8.

Proof. A task can start if all the output data of its predeces-
sors have arrived. In our schedule, T1; T2; T3; T4; T5 are all
scheduled in their earliest starting time, and T1 ! T2 ! T7

is the longest path if we do not consider all the communi-
cation cost, so the earliest starting time of T7 is no less than
6, and its earliest completion time is no less than 7. tu
IfT1 and T2 are not assigned to the sameprocessor, then the

earliest completion time of T2 is 11, and the earliest comple-
tion time of T7 will be 12, which is not optimal. Thus in the
optimal schedule, T1 and T2 must be assigned to the same
processor.

If T2 and T7 are not assigned to the same processor, then
the earliest completion time of T7 is no less than 9. So in the
optimal schedule, T2 and T7 must be assigned to the same
processor.

Now for T6, it only has two choices: (1) in the same pro-
cessor of T1; T2 and T7: then the earliest starting time of T6

and T7 are 6 and 8 respectively; (2) not in the same processor
of T1; T2 and T7: then the earliest starting time of T6 is 5.5,
and the earliest completion time of T7 is 8.5.

Therefore, the makespan of the optimal schedule is 8.

3.6 Trace of TDCA

This subsection gives an example to illustrate how TDCA
works in detail. The example DAG is as shown in Fig. 3 and
the runtime of tasks on different processors are described in
Table 1. The parameters used by TDCA are described in
Table 2. For example:

Fig. 2. The EZ benchmark and the TDCA schedule.

Fig. 3. A DAG example to show the running trace.
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estð8; 1Þ ¼ maxfminfectð5; 1Þ; ectð5; fprocð5; 1ÞÞ þ Cð5; 8Þg;
minfectð6; 1Þ; ectð6; fprocð6; 1ÞÞ þ Cð6; 8Þg

¼ maxfminf16; ectð5; 5Þ þ 7g;
minf15; ectð6; 1Þ þ 8gg

¼ maxfminf16; 12þ 7g;minf15; 15þ 8gg
¼ 16:

In order to compute cpredð10Þ, we need to compare node 8
and node 9. Since fprocð8; 1Þ ¼ 3 6¼ fprocð10; 1Þ ¼ 5, the value
for node 8 to be compared is ectð8; fprocð8; 1ÞÞ þ Cð8; 10Þ ¼
ectð8; 3Þ þ 10 ¼ 21þ 10 ¼ 31. Since fprocð9; 1Þ ¼ 4 6¼ fprocð10;
1Þ ¼ 5, the value of node 9 to be compared is ectð9; fprocð9;
1ÞÞ þ Cð9; 10Þ ¼ ectð9; 4Þ þ 5 ¼ 18þ 5 ¼ 23, which is less
than 31. Therefore, cpredð10Þ ¼ 8.

Fig. 4 shows the initial clusters achieved at the first phase of
TDCA.We sort all nodes in non-decreasing of their levels. The
first cluster starts from the node with the smallest level, task
10, and it chooses processor 5, namely fprocð10; 1Þ, to hold the
cluster. Now i ¼ 10 and j ¼ cpredð10Þ ¼ 8. We need to check
whether j satisfies inequality (5). As ectð8; 5Þ ¼ 21 is less than
ectð8; fprocð8; 1ÞÞ þ Cð8; 10Þ ¼ ectð8; 3Þ þ 10 ¼ 31, inequality
(8) holds. By adding cpredð10Þ ¼ 8, cpredð8Þ ¼ 6; cpredð6Þ ¼ 3
and cpredð3Þ ¼ 1 to processor 5, we obtain the first cluster.
Then task 9 is the first unassigned task in the level list. Task 9
and 7 are added to processor fprocð9; 1Þ ¼ 4 as usual. Since
y ¼ cpredð7Þ ¼ 3 has been assigned, we need to choose a dif-
ferent predecessor for task 7. Task 4 is the only task that satis-
fies all conditions since it has not been assigned and
ectð4; 4Þ ¼ 9 is less than ectð4; fprocð4; 1ÞÞ þ Cð4; 7Þ ¼ 13.

Even though task 1 has been assigned before, since it is
the only predecessor of task 4, we also add task 1 to the
cluster. So the second cluster has tasks 9, 7, 4 and 1.
Similarly, the third cluster has tasks 5, 2 and 1, and assigned
to processor 2.

In the duplication phase, the first position to execute the
duplication strategy is between task 5 and task 2 on proces-
sor 2. After duplicating the critical predecessor trail of task
5, we have task 5, 3 and 1 on processor 2; task 2 and task 1
are moved to processor 1 since processor 1 is the first avail-
able favorite processor for task 2. The new schedule has a
makespan of 34, which is shorter than the original one. The
next duplication happens between task 7 and task 4 on pro-
cessor 4. After duplicating the critical predecessor trail of
task 7, task 9, 7, 3 and 1 run on processor 4. Task 4 and task
1 are moved to processor 3 since it is the only unoccupied
processor. The new schedule still has a makespan of 34. We
adopt the new schedule since the makespan does not
increase. Though the latter duplication does not reduce the
makespan, it may cause other duplications happen and
then reduce the makespan. Also, it could be useful in the
next phase.

The resulting schedule after the duplication phase con-
sidering the duplication chain is shown in Fig. 5. At the final
phase of processor merging, as fprocð2; 1Þ ¼ 5, we first try to
merge processor 1 to processor 5. This attempt is then can-
celled as it makes the makespan larger. However, merging
processor 2 to processor 5 achieves a good result, and the
new schedule has a makespan of 27. One can observe that
after the merging, task 5 could use idle time slots on proces-
sor 5 and reduce the communication cost with task 5 to 8,
and task 8 starts earlier.

TABLE 1
Computation Cost for the Nodes in Fig. 3

Processor
P1 P2 P3 P4 P5

Node

1 3 6 5 5 4
2 6 3 5 7 3
3 6 5 7 7 6
4 5 6 4 4 4
5 7 2 4 2 2
6 6 7 4 6 5
7 6 4 5 4 6
8 6 6 5 5 6
9 4 5 3 2 3
10 3 1 7 1 2

TABLE 2
Parameters for the Example DAG in Fig. 3: s for est, c for ect, fp for fproc

No. s1 s2 s3 s4 s5 c1 c2 c3 c4 c5 fp1 fp2 fp3 fp4 fp5 cpred level

1 0 0 0 0 0 3 6 5 5 4 1 5 3 4 2 0 65
2 3 6 5 5 4 9 9 10 12 7 5 1 2 3 4 1 52
3 3 6 5 5 4 9 11 12 12 10 1 5 2 3 4 1 53
4 3 6 5 5 4 8 12 9 9 8 1 5 3 4 2 1 41
5 9 11 12 12 10 16 13 16 14 12 5 2 4 1 3 3 37
6 9 11 12 12 10 15 18 16 18 15 1 5 3 2 4 3 38
7 9 12 12 12 10 15 16 17 16 16 1 2 4 5 3 3 30
8 16 18 16 18 15 22 24 21 23 21 3 5 1 4 2 6 23
9 15 16 17 16 16 19 21 20 18 19 4 1 5 3 2 7 17
10 22 24 21 23 21 25 25 28 24 23 5 4 1 2 3 8 7

Fig. 4. Initial schedule. (makespan=36).
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Since task 9 could complete earlier than the initial schedule
by the duplication phase, and task 8 could complete earlier at
the processormerging phase, task 10 could start earlier. There-
fore, we have a smaller makespan. The duplication chain does
not affect at this phase. Then in the task insertion phase, no
insertion will be added. The ultimate schedule is shown in
Fig. 6. This example demonstrates the optimization of TDCA.
By comparison, the schedule of TANH is also shown in Fig. 7,
which has amakespan of 31.

3.7 Complexity Analysis

The time complexity of calculating est, fproc, and other
parameters is OðmeÞ, Oðmn logmÞ, and OðeÞ respectively.
So the overall complexity of computing the parameters is
Oðmeþmn logmÞ.

In the task clustering phase, we need to sort tasks with a
complexity of Oðn log nÞ. Every node may have to find an
unoccupied processor with a complexity of OðmnÞ. This
check step involves enumerating all predecessors with a
complexity of OðeÞ. So the complexity of task clustering is
Oðn lognþmnþ eÞ.

In the duplication phase, there are at mostOðnÞ task dupli-
cation positions. After each duplication phase, we need to
recalculate the makespan, whose complexity is OðmeÞ. The
complexity of task duplication is atmostOðmneÞ.

In the processor merging phase, the complexity of enu-
merating processors is OðmÞ, and the complexity of recalcu-
lating the makespan is still OðmeÞ. So the total complexity
of the processor merging is Oðm2eÞ.

Finally in the task insertion phase, there are at most OðnÞ
task insertion positions. For each insertion phase, we need
to insert some tasks, whose complexity is Oð1Þ. So the com-
plexity of task insertion is at most OðnÞ.

To sum up, the overall time complexity of TDCA is
Oðmneþm2eÞ. We know that the complexity of TANH is
OðmneÞ if we counts the complexity of recalculating the
makespan after each duplication phase. We can find that
TDCA has the same complexity with TANH when m is
comparable to n.

The space complexity of TDCA is OðmnÞ as each task can
duplicate at mostm times.

4 EXPERIMENTS AND ANALYSIS

4.1 DAG Graph Generator

Aswe did not find enoughDAGbenchmarks in the literature,
we systematically generate randomDAGgraphswith various

structures to compare TDCA with several state-of-the-art
existing algorithms, and analyze the task duplication para-
digm. Specifically, we vary several key parameters to investi-
gate their impact on the scheduling algorithms, namely the
number of tasks n, the communication-computing cost ratio
CCR, the heterogeneity parameter h, and the depth of
the DAG L. We generate random graphs with the following
steps.

1) Generate nodes in layers. The generated DAG consists of
L layers and nodes are assigned to layers. Nodes in
one layer only have edges pointing to the nodes in the
next layer. The first layer only contains one node,
the entry-node. The last level only contains one node,
the exit-node. The remaining n� 2 nodes are evenly
distributed to the otherL� 2 layers.

2) Generate edges between nodes in adjacency layers. We
ensure that each node has at least one predecessor
node and one successive node.

3) Generate computation costs. We use the heterogeneity
parameter h to control the variance of the computing
costs of a task on different processors. For task i, let
T ði; pÞ represent its computation cost when assigned
to processor p. T ði; pÞ follows a uniform distribution
and has a pre-determined mean value.

4) Generate communication costs. The communication-
computing cost ratio, CCR, is an important parame-
ter that greatly influences the performance of differ-
ent scheduling algorithms. CCR determines the
ration between the pre-determined mean value of
computing costs and the pre-determined mean value
of communication costs.

Fig. 5. After duplication. (makespan=34).
Fig. 6. After merging. (makespan=27).

Fig. 7. Schedule of TANH. (makespan=31).
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4.2 Comprehensive Comparison

We conduct two experiments to compare the performance
of TDCA, TANH and HEFT and analyze how the parame-
ters affect their performance. In the first experiment, we
compare the makespans of the schedules produced by
TDCA, TANH and HEFT. We generate test graphs by using
the following parameters:

1) n 2 {30,35,40,45,50,55,60,65,70,75,80,85,90,95,100}
2) L 2 {3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}
3) CCR 2 {0.1,0.3,0.5,0.7,1,1.2,1.5,1.8,2,2.5,3,5,7,10,15}
4) h 2 {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4}
The number of processors m is set to be maxWidthðGÞ,

the width of the DAG, defined to be the max value among
the numbers of edges between any two adjacent layers. For
example for the DAG in Fig. 3, the maxWidth is 5. This defi-
nition is adequate for any algorithm to achieve good perfor-
mance. Note that it is OK to use larger or smaller values to
define the number of processors for our DAG generator. We
generate 50,625 test cases, test TDCA, DCPD, TANH, HEFT
on these test cases, and rank the algorithms basing on their
makespan of their schedules. Fig. 8 shows the ranking
result, from which we see that TDCA produces the best
schedule in 58.14% (29,434 out of 50,625) test cases, the fol-
lowing schedule in 20.56% (10,410 out of 50,625). By com-
parison, DCPD is in rank 2 for most test cases, and HEFT is
in rank 3 for most cases. The result shows that TDCA out-
performs DCPD, TANH and HEFT on most test cases.

In the second experiment, we investigate the impact of
key parameters on the performance of the algorithms. Note
that the parameter space is too large for us to exhaustively
explore their effects. To simplify the analysis, we assume
that the parameters affect the performance of the algorithms
independently. The standard parameter configurations are
shown in Table 3. By varying one parameter while fixing the
others in the baseline configuration, we can investigate
the influence of each parameter. As the specific weights and
the graph topological structure are randomly generated,

one algorithm usually produces different schedules with
different makespans under the same configuration, which
impedes us observing the effect of a parameter. We reduce
this variance by repeatedly generating test cases and present-
ing the mean values.

We first investigate the impact for the number of nodes n,
as shown in Fig. 9. All algorithms scale linearly with the
number of nodes and TDCA always produces the smallest
mean makespan.

The impact of CCR is shown in Fig. 10. When CCR is
small, the communication cost between tasks can be negligi-
ble and task computation cost plays a key role in the result-
ing makespans. When CCR is very large, communication
cost mainly influences the makespans. Every algorithm pro-
duces larger makespan when CCR increases since commu-
nication becomes more expensive. When CCR is small
ranging from 0.1 to 0.3, HEFT, DCPD and TDCA perform
similarly. When CCR is ranging from 0.3 to 13, TDCA out-
performs the other three. DCPD is slightly better than
HEFT, and they are better than TANH. In general, TDCA is
the best performing algorithm.

The heterogeneity parameter h represents the heteroge-
neity of computing power among processors. Value 0 is for
homogeneous computing environment where a task has the
same execution time on all processors. The larger the value
of h is, the more heterogeneous the system is. The results
presented in Fig. 11 show the mean makespan of different
algorithms on different values of parameter h. In all ranges,

Fig. 8. Comparison on the number of test cases in different rankings.
TDCA has the shortest makespan for most test cases (58.14 percent),
as shown in Rank1; and TDCA outputs the longest makespan on very lit-
tle small portion of the test cases (0.014 percent), as shown in Rank4.

Fig. 9. Comparison of makespan on number of nodes. TDCA yields the
shortest makespan.

Fig. 10. Comparison of makespan on CCR. TDCA yields the shortest
makespan in most cases.

TABLE 3
Baseline Configuration for the Parameters

n L m CCR h

50 7 100 2.0 0.7
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TDCA produces the shortest schedules. A larger h indicates
that every task has very different computation costs on dif-
ferent processors. In the extreme case, the task takes very lit-
tle time on one processor but takes very long time on other
processors, the algorithms then know how to effectively
allocate the tasks to the proper processors to reach a small
makespan. We observe that TDCA, DCPD, HEFT follow the
similar decreasing trend for stronger heterogeneity. TANH
is less stable with a larger variance and it even increases the
makespan after h ¼ 0:6. This result indicates that TANH is
not good for strong heterogeneity.

The last parameter is the number of layer L. The results
shown in Fig. 12 show the mean makespan of different algo-
rithms on different number of layers. Makespans increase lin-
early with the number of layers, which meets our expectation
since the large number of layer indicates lowparallelism.

In general, TDCA generates the best schedule on all test
cases. Among various parameters of the graphs, CCR has
the greatest impact on the performance of different algo-
rithms. Other parameters can also influence makespans, but
they do not change the ranks of algorithms.

4.3 Analysis on the Duplication

To further analyze the task duplication process anddetermine
the best value for the number of iterations (value K in
Algorithm 2), we modify the task duplication phase of TDCA
by iteratively searching for candidate duplication positions.
At each round of the iteration, we enumerate processors from
1 tom and check every candidate position for the duplication.
Duplications are kept if they do not grow the makespan. If in
a certain round of iteration, no task duplication is adopted,
thenwe terminate the duplication process.

To determine the value ofK, we count howmany rounds
of iterations are needed to exhaust all the candidate task
duplication positions. The results are shown in Fig. 13. One
round of iteration means that no task duplication can
improve the original schedule and two rounds of iterations
indicate that one round of iteration can locate all beneficial
task duplication candidate positions. One and two rounds
of iterations consist of more than half of test cases when the
number of nodes is small. Their ratio decreases dramatically
when the number of node increases. The percentage is
55.88 percent when the number of nodes is 30 and it is
12.86 percent when there are 100 nodes. This result

demonstrates that there are many task replication chains
and other algorithms miss these opportunities.

When the number of nodes is around 100, four rounds of
iterations are sufficient for 97.48 percent test cases. Since the
ratio of four rounds of iterations is still rising, it is reason-
able to predict that K ¼ 4 would be enough for even larger
graphs. On the other hand, it is important to see how much
improvement we can achieve when conducting multiple
rounds of iterations.

The results demonstrate that most improvement is gained
at the first round of iteration, which is about 12 percent. The
second round of iteration can further achieve about 2 percent
improvement. The following rounds of iterations have less
than 1 percent improvement. It can be explained by the 80-20
rule that roughly 80 percent of the effects come from20percent
of the causes. Therefore, we have to pay more time to gain
more improvement. There is an obvious tradeoff between
complexity of the algorithm and the quality of the schedule.
Generally speaking, the existence of replication chains in the
phase of task duplication truly degenerate the solution quali-
ties of TANH since there is a trend that more rounds of itera-
tions are required to exhaust all the task duplication candidate
positions with the growth of the node numbers. Our analysis
shows that the more rounds of iterations are used, the more
valid task duplication positions we can find. However, the
more rounds of iterations are used, the less gain we can get
from each round of iteration. We check out that four times of
iteration can find most valid task duplication candidate posi-
tions and it can achieve a reasonable improvement at each

Fig. 11. Comparison of makespan on heterogeneity. TDCA yields the
shortest makespan.

Fig. 12. Comparison of makespan on number of layers. TDCA yields the
shortest makespan.

Fig. 13. Number of test cases that achieve local optimum at different
rounds of the task duplication.
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round of iteration. Therefore, TDCA iterates the process four
times to get shorter solutions.

4.4 Further Test on Large Scale DAGs

To compare the algorithms in a large scale, we generate 120
test cases for large DAGs using the following parameters:

1) number of tasks n 2 {2000, 2300, 2700, 3000}
2) depth of the DAG L 2 {200, 300}
3) commu-compu ratio CCR 2 {0.3, 0.7, 1.2, 1.8, 2.0}
4) heterogeneity parameter h 2 {0, 0.5, 1.0}
Here “commu-compu ratio” indicates the communication-

computing cost ratio of the DAGs. In this experiment, we set
m ¼ 100 as it is important to test the scheduling qualities
when the number of processors is bounded to a reasonable
value. Fig. 14 illustrates the rankings. Among the 120 test
cases, TDCA ranks the first in 45.83% (55 out of 120) test cases;
DCPD ranks the first in 29.17% (35 out of 120) test cases;
HEFT ranks the first in 25.00% (30 out of 120) test cases.Unfor-
tunately TANH never ranks the first, and we notice that the
makespans of schedules generated by TANHare significantly
longer than that of the other three algorithms.

It shows that TANH may not properly handle the cases
when the number of tasks is much larger than the number
of processors. This experiment demonstrates that TDCA
makes substantive progress based on TANH, and TDCA is
also competitive compared to state-of-the-art algorithms for
large scale DAG scheduling problems.

5 CONCLUSION

We propose a novel algorithm called TDCA for the DAG
task scheduling problem in the heterogeneous distributed
environment. The proposed algorithm utilizes the duplica-
tion task more thoroughly involving parameter calculation,
task duplication, and task merging. We redefine several key
parameters est, cpred by considering the most favorite pro-
cessor for each task, the processor that the task has the earli-
est completion time if the task is assigned on the processor.
When calculating est, we ignore the communication cost if
the task and its predecessor are on the same processor,
which yields a more accurate est. The meanings of ect and
fproc are changed accordingly. These critical concepts have
been improved to build the initial clusters.

We consider both the duplication phase and the merging
phase such that the makespan could be further shortened.

During the duplication phase, we design a method to deter-
mine the order of finding the candidate duplication positions.
By analyzing the effect of task duplication, we observe that
chain reactions exist in the process of task duplication. After
one round of scanning all duplication candidates, we can clas-
sify all duplication candidates into effective candidates,
which will be applied to improve the overall makespan, and
ineffective candidates, whichwill be put aside temporarily. In
the next round of task duplication, these ineffective candi-
dates can become effective because the current schedule has
changes from the starting of the previous round. TDCA then
fully utilizes this chain reaction phenomenon, and improves
the scheduling performance.

Several comprehensive comparison experiments are con-
ducted to demonstrate that TDCA can significantly improve
the scheduling quality and explicitly outperform the baseline
algorithmswithout increasing the computation complexity.
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