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Abstract—Coverage-guided fuzzing is one of the most effective solutions for vulnerability discovery. Among coverage-guided fuzzing,
full-speed fuzzing, such as UnTracer, traces test cases only when they discover new coverage. Due to the high expense of tracing test
cases, full-speed fuzzers improve the efficiency of fuzzing by tracing only coverage-increasing test cases. However, the existing
full-speed fuzzer (i.e., UnTracer) is based on basic block coverage, suffering a severe problem called edge collision. Moreover, such
fuzzers neglect the path frequency, which affects fuzzing effectiveness. In this paper, we propose CSI-Fuzz, a fuzzer utilizing coverage
sensitive instrumentation to address the problems of existing full-speed fuzzing. CSI-Fuzz directly instruments at edges, which solves
the problem of edge collision. Meanwhile, CSI-Fuzz sets path identifiers to count the frequency of covered paths. Our CSI-Fuzz can be
recognized as an add-on and seamlessly applied to existing coverage-guided fuzzers. We accordingly implement CSI-Fuzz based on
two widely-adopted fuzzers, AFL and AFLFast, to evaluate its performance. The experiments demonstrate that CSI-Fuzz discovers
more edges than AFL, AFLFast, and UnTracer. Additionally, CSI-Fuzz exposes more bugs than the other fuzzers.

Index Terms—Full-speed Fuzzing, Edge Tracing, Edge Collision, Path Frequency
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1 INTRODUCTION

FUZZING is an effective vulnerability assessment tech-
nique which randomly generates inputs, monitors the

execution of the target program for exceptions such as
crashes, and utilizes the results of execution to guide the
generation of more inputs. The exceptions deep in target
programs manifest potential vulnerabilities. Many of these
vulnerabilities, like buffer overflow, can have serious se-
curity implications such as causing breakouts of malware
around the world [2]. Generally, fuzzing is considered as
black-, white- or grey-box depending on the level of aware-
ness on the target program. Black-box fuzzing starts with
no information about the internal structure of the program.
White-box fuzzing utilizes the program analysis on the
source code and grey-box fuzzing uses instrumentation (i.e.,
code inserted into a program to monitor its components) to
collect information about the program.

Various fuzzers have been developed for effective bug
analysis purpose [8], [9], [10], [11], [35], [36]. Among the
existing fuzzing solutions, coverage-guided fuzzing has
been widely recognized and deployed. One of the suc-
cessful coverage-guided fuzzing examples is Google’s OSS-
Fuzz platform [13], which adopts libFuzzer [17] and AFL
[36], to continuously test real-world applications. As re-
ported in GoogleBlog [3], the OSS-Fuzz platform has found
over 1, 000 bugs in five months. Grey-box coverage-guided
fuzzing (GCF) uses dynamic or static instrumentation to

• X. Zhu, X. Feng, S. Wen and Y. Xiang are with School of Software and
Electrical Engineering, Swinburne University of Technology, Melbourne,
VIC, 3122. E-mail: {xiaogangzhu, xfeng, swen, yxiang}@swin.edu.au

• S. Camtepe is with DATA61 CSIRO, Sydney, NSW, 2122.
Email: Seyit.Camtepe@data61.csiro.au

• X. Meng is with the Rice University, Houston, Texas.
Email: xiaozhu.meng@rice.edu

• K. Ren is with the University at Buffalo, New York, United States.
Email: kuiren@buffalo.edu

obtain the knowledge of an execution path that is exercised
by an input. If an input discovers new coverage, fuzzing
will retain the associated input as a seed. A seed is used
to generate more inputs via mutating some bytes of the
seed. Otherwise, the input is discarded, and new inputs are
generated from existing seeds to test target programs. This
iterative loop related to the seed mutation and the input
retention provides the chance to explore execution paths in
an efficient manner, and increases the likelihood to disclose
more vulnerabilities [8].

However, as analysed in UnTracer [22], such iterative
loop introduces significant overhead because fuzzing traces
all test cases. For each test case, fuzzing determines new
coverage via comparing the current coverage with all dis-
covered coverage. Because most test cases generated by
fuzzing cannot discover new coverage, it will save much
time if fuzzing skips tracing such test cases. Therefore, to
increase the execution speed of fuzzing, UnTracer proposes
the full-speed fuzzing which traces test cases only when
fuzzing examines new basic blocks. However, the block-
based fuzzing introduces a severe problem called edge
collision, which occurs when two or more different edges
in a control flow graph (CFG) are regarded as the same one.
Specifically, new CFG edges may not necessarily indicate
new basic blocks because edges provide fuzzing with the
information of the connections between different blocks.
If the block-based fuzzing does not have the information
of connections, it cannot distinguish the same basic block
executed with different edges. Edge collision decreases the
efficiency and effectiveness of fuzzing. First, the collision
blurs fuzzing strategies, such as seed selection and muta-
tion scheme, which impacts the efficiency of vulnerability
exposure. Second, the collision could cause fuzzing to skip
tests on conflicted paths, which will miss vulnerabilities in
such paths [11].
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Moreover, existing full-speed fuzzing cannot count path
frequency accurately because it does not trace non-coverage-
increasing test cases (i.e., test cases that do not discover
new coverage). As path frequency is critical for fuzzers
whose mutation schemes are based on the frequency of
paths, existing full-speed fuzzing is not able to support such
fuzzers. For example, AFLFast [8] calculates path identifiers
based on current coverage, and uses the identifiers to count
the frequency of paths. Then, it assigns more mutation
chances for the low frequent paths. However, because ex-
isting full-speed fuzzers do not trace test cases that are
non-coverage-increasing, the frequencies of associated paths
cannot be counted. In this case, AFLFast wrongly assigns
mutation chances to paths, and thus decreases the efficiency
of fuzzing.

To solve the problems of existing full-speed fuzzing, a
possible solution is to instrument directly at edges. How-
ever, this introduces new problems such as indirect control
flow because it is hard to determine the targets of them
statically [4], [20]. Meanwhile, Andriesse et al. [4] show that,
in 981 real-world compiler-generated binaries, the missing
target functions of indirect calls can be more than 20%
of all functions. The numerous indirect calls lead fuzzing
to missing some edges, which decreases the possibility to
expose bugs. In order to instrument directly at edges, the
problem of indirect edges has to be solved.

In this paper, we propose CSI-Fuzz, which utilizes cov-
erage sensitive instrumentation to solve the problems of
full-speed fuzzing. The instrumentation at edges will stop
the execution of target binaries when fuzzing examines a
new edge. Then, the next time fuzzing examines the same
edge, the target program will continue to run. CSI-Fuzz
instruments two types of edges, which are pre-determined
edges and indirect edges. First, CSI-Fuzz directly instru-
ments pre-determined edges, which are the edges that
can be determined when statically analysing binaries. The
instrumentation at pre-determined edges will be removed
once these edges have been examined. For example, it
directly instruments at condition-taken edges (e.g., the ‘if’
branch in ‘if(a==1){...} else{...}’ when ‘a=1’) and
condition-not-taken edges (e.g., the ‘else’ branch in the pre-
vious example). Second, CSI-Fuzz instruments at the source
blocks of indirect edges, including jump sites (e.g., switch
statements) and call sites (e.g., virtual function calls), of
which the instrumentation differentiates edges at runtime.
Therefore, CSI-Fuzz can trace test cases only when they
discover new edges, rather than basic blocks. Meanwhile,
CSI-Fuzz sets path identifiers by calculating hash of path
marks, which are the first new edges when new paths are
found. Our solution to edge collision problem can improve
the performance of other coverage-guided fuzzers because
the coverage information is critical to those fuzzers. Note
that, our solution is not to replace the existing fuzzers, but
to collaborate with the existing ones.

Our CSI-Fuzz is built atop the modified coverage-guided
fuzzer AFL, and uses Dyninst [21] to instrument target
binaries. Besides, we also develop CSI-Fuzz(AFLFast), in-
tegrating CSI-Fuzz with another coverage-guided fuzzer,
AFLFast. The evaluation demonstrates that CSI-Fuzz is
more effective and efficient than AFL, AFLFast and Untracer
in terms of edge discovery. For the bug discovery, CSI-
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(b) Paths A → C → E and A →
B → D have been exercised.

Fig. 1. Edge collision of block-based fuzzing. If paths A → C → E and
A→ B → D have been exercised, the interrupts at blocks are removed.
Then, the new edge BE will be regarded as an old one, resulting in edge
collision.

Fuzz exposes more unique bugs than AFL, AFLFast and
UnTracer. Moreover, CSI-Fuzz discloses a bug that other
fuzzers are not able to find. In summary, the key contri-
butions of this paper are three-fold:

• We analyse the problems of existing full-speed
fuzzing. First, it introduces problem of edge collision.
Second, it cannot count path frequency accurately.
Both of the two problems affect the efficiency and
effectiveness of fuzzers.

• We accordingly design CSI-Fuzz utilizing coverage-
sensitive instrumentation. It instruments directly
at pre-determined edges to only trace coverage-
increasing test cases. For the indirect edges, it instru-
ments at the source blocks of them to conduct the
full-speed fuzzing.

• We implement CSI-Fuzz based on coverage-guided
fuzzers AFL and AFLFast. The results of experiments
demonstrate that CSI-Fuzz is effective and efficient
in terms of edge discovery, execution speed, and bug
discovery.

We open-source our CSI-Fuzz on Github for further
improvement. The code is available at https://github.com/
Vul4Vendetta/csi-afl.

2 OVERVIEW OF CSI-FUZZ

2.1 Background of Fuzzing
AFL is a widely used GCF and many existing fuzzers [7],
[8], [18], [27], [36], [38] are developed based on AFL. As the
primer of our idea, we introduce the fuzzing logic of AFL
in this section. AFL tests a target program in an iterative
fuzzing loop, which mainly includes seed selection, seed
mutation, and coverage monitoring. It first sets some initial
seeds, which are some inputs chosen by users. Then, it
builds up a seed queue, which includes all the inputs that
can discover new coverage. Based on the performance of
each seed (e.g., the execution speed or the size of the seed),
AFL selects the seed with the best performance in the queue
to generate more inputs. Specifically, AFL mutates some
bytes of the selected seed, and uses the result of mutation
(i.e., a new input) to test the target program. After the new
input has tested the target program, AFL checks whether
the input discovers new coverage. The new coverage is
indicated by new edges or different hit-counts of edges. AFL
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Fig. 2. Workflow of CSI-Fuzz. The yellow components indicate the coverage sensitive instrumentation. It instruments at two types of edges, pre-
determined edges and indirect edges. When it discovers new edges, it will run the tracer to update covered edges and remove the instrumentation
at covered edges in oracle.

uses a bitmap to record the edge coverage, and each byte
in the bitmap indicates the state of an edge. To determine
new coverage, AFL traverses the bitmap and checks each
byte. If the input discovers new coverage, it is retained as a
new seed and added into the seed queue. Otherwise, the
input is discarded. However, AFL traces every test case,
which wastes much time because most test cases cannot
discover new coverage. The mutation of a seed continues
until fuzzing consumes up all the mutation energy, i.e., the
times of mutating a seed. Then, AFL goes back to select a
new winner seed and continues to generate more inputs.

To improve the efficiency of the fuzzing loop, UnTracer
skips tracing non-coverage-increasing test cases via insert-
ing interrupt at the start of each uncovered basic block.
Then, it removes the interrupts at the covered blocks, as
shown in Fig.1. At the beginning of each block, an interrupt
is inserted to terminate the execution, as shown in Fig.1(a).
When fuzzing has exercised the paths A → C → E
and A → B → D, the interrupts at the covered blocks
A,B,C,D,E are removed, as shown in Fig.1(b). There-
fore, UnTracer speeds up fuzzing via improving the cov-
erage monitoring in the fuzzing loop. However, this block-
based strategy introduces severe edge collision to fuzzing.
As shown in Fig.1, because paths A → C → E and
A → B → D have been exercised, the interrupts at blocks
A,B,C,D,E are removed. Therefore, the target program
will continue to run when the path A → B → E is
exercised, indicating that the path includes no new edges.
However, the edge BE is a new edge but is regarded as an
old one, showing that edge collision occurs in this example.

2.2 Edge Instrumentation
CSI-Fuzz is a GCF, which statically instruments edges of
target binaries so that it can conduct full-speed edge tracing.
Fig.2 shows the overview of CSI-Fuzz, which instruments
the target binary using coverage sensitive instrumentation.
The instrumentation at edges is sensitive to the change of
coverage, and helps fuzzing monitor new edges without
tracing all test cases. When a test case discovers a new

edge, CSI-Fuzz traces the target binary and updates the
information of examined edges. Therefore, CSI-Fuzz traces
edges only when it examines a new edge. Besides, the
new edge information (i.e., path marks) helps calculate path
identifiers, which can count the frequency of covered paths.

CSI-Fuzz instruments at two types of edges which
are pre-determined edges and indirect edges. The pre-
determined edges include condition-taken edges and
condition-not-taken edges. A condition-taken edge is an
edge taken when a test case satisfies comparison instruc-
tion. Otherwise, it is a condition-not-taken edge. Other
pre-determined edges are unconditional-jump (i.e., a jump
without any branch) edges and no-jump edges (i.e., an
edge without any jump). The other type is indirect edges
including indirect calls and indirect jumps. When a test case
examines a new edge, the execution of target binary will be
terminated. Then, CSI-Fuzz removes the instrumentation at
covered pre-determined edges so that the future executions
will not be terminated when the same edges are exam-
ined. This solution improves the execution speed because
new coverage is determined by the target binary itself,
i.e., fuzzing skips tracing non-coverage-increasing test cases.
Fig.3 shows how CSI-Fuzz instruments at pre-determined
and indirect edges. In Fig.3(b), the pre-determined edge AB
is examined, thus the instrumentation at edge AB will be
removed in the later executions.

The challenge is to instrument indirect edges because
the targets of indirect edges are hard to get via statically
analysing binaries. Therefore, instead of instrumenting in-
direct edges, CSI-Fuzz instruments at the indirect call sites
and indirect jump sites, where we can accurately determine
the indirect control flow targets at run time. When the target
program reaches a source block of an indirect edge, it will
compare the current target block to the historical ones. The
historical target blocks are the ones that have been examined
before. If the current target block exists in the historical
ones, it indicates that the current indirect edge has been
examined. Therefore, CSI-Fuzz continues the execution of
the target program. Otherwise, the current indirect edge
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Fig. 3. Pre-determined edges and indirect edges. Instrumentation at pre-determined edges and indirect edges will stop the execution if new coverage
is discovered. The black boxes are the instrumentation at edges. ’X’ means the block is unknown. ’N’ means the condition-not-taken edge while ’Y’
means the condition-taken edge.

is newly found, and the target program will then exit. In
Fig.3(b) and 3(c), indirect edges BD and BE are newly
discovered, the program will exit at those edges. Because
edges BD and BE are recorded, the next time fuzzing will
not terminate executions that examine edges BD and BE.

2.3 Full-speed Edge Tracing

The full-speed edge tracing only traces test cases that dis-
cover new edges. To only trace coverage-increasing test
cases, CSI-Fuzz instruments a target binary and generate
two different instrumented binaries. One is called oracle,
which terminates at new edges. The other is called tracer,
which updates information of covered edges.

2.3.1 oracle
The oracle is an instrumented binary utilized to conduct
coverage-increasing edge tracing and it is invoked most of
the time during fuzzing. Edges in oracle are instrumented
with a function call to exit(). If a test case examines a new
edge in the oracle, the oracle will exit. In this case, CSI-Fuzz
cannot get all the edges along the path that the test case
exercises. Therefore, CSI-Fuzz uses the tracer to get all the
edges of that path and then removes instrumentation or
records target blocks at those edges in oracle. Fig.3 shows
how oracle is instrumented.

2.3.2 tracer
The tracer is an instrumented binary utilized to update the
information of examined edges. CSI-Fuzz does not instru-
ment tracer with exit() but with instructions recording all the
edges along a path. The tracer provides the oracle with all
edges along a path examined by the current test case. Then,
CSI-Fuzz removes instrumentation or record target blocks
at those covered edges in oracle. Note that, besides oracle,
the tracer can also trigger a crash. Because oracle exits when
examining a new edge, it may exit before triggering a crash.
The tracer, when given the same input, would then trigger
the crash that would happen after discovering the new edge.

2.3.3 crasher
We use a crasher to determine a new crash during fuzzing.
The instrumentation of crasher is similar to the oracle, and
will terminate execution when a new edge is examined.

This solution saves time because one crash may be triggered
many times. The crasher, which is instrumented exit() at
uncovered edges, is invoked only when the oracle or tracer
triggers a crash. Then, the test case triggering a crash in the
oracle or tracer is utilized to examine the crasher. If the crasher
terminates execution instead of crashing, it indicates that
the test case triggers a new crash. Then the crasher removes
instrumentation or records edges along the path examined
by the test case. Otherwise, if the crasher crashes, it suggests
that the test case triggers an old crash.

2.4 Path Identifier
For edge coverage-guided fuzzing, when a test case dis-
covers a new edge in a target program, the test case is
regarded as finding a new path. It is reasonable because a
path consists of edges, and the existing paths do not contain
the new edge. CSI-Fuzz follows this convention and leaves
a mark on the new edge. Then, Fuzzing calculates path
identifiers, which are used to record paths, based on all
marks on the path. Using all marks on a path to calculate
path identifiers enable us to distinguish paths that do not
examine any new edge.

(a) The original
program.

(b) Path A → B →
C → D is exam-
ined.

(c) Path A → B →
F → H is examined.

Fig. 4. Path identifiers. The yellow triangle is a path mark, which is the
first new edge along a path.

Fig.4 shows the process of creating marks on paths.
Fig.4(a) is a target program which has not been examined
and has all the instrumentation. If a first test case examines
the path A→ B → C → D, the first new edge AB is set as
a mark of the path A→ B → C → D, as shown in Fig.4(b).
When the oracle meets the first new edge AB, it exits. CSI-
Fuzz then invokes tracer to track all edges along the path, i.e.,

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:30:59 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3008826, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 1 The Overall Algorithm of CSI-Fuzz
Input: P : the target program
Data: e: an edge

E: a set of edges
t: a test case generated by AFL
T : the set of all coverage-increasing test cases
M : the set of edges used as marks

1: AFL SETUP ()
2: E = GETALLEDGES (P )
3: PO = INSTORACLE (P,E)
4: PT = INSTTRACER (P,E)
5: STARTFORKSERVER (PO, PT )
6: while 1 do
7: t = CHOOSETESTCASE ()
8: if ISEDGEINCREASE (PO, t) then
9: add first e to M

10: add t to T
11: Etrace = TRACEEDGES (PT , t)
12: // Check loops
13: if LOOPSEXIST () then
14: MARKTESTCASE (t)
15: end if
16: STOPFORKSERVER (PO)
17: PO = REMOVEINST (PO, Etrace)
18: ADDMARKS (PO, M )
19: GETINDIRECTEDGES ()
20: // Restart forkserver
21: STARTFORKSERVER (PO)
22: end if
23: end while

edges AB, BC and CD. Then, if a second test case examines
the path A → B → F → H , the first new edge BF is set
as a mark of the path A → B → F → H , as shown in
Fig.4(c). Finally, CSI-Fuzz uses all the path marks along the
same path to calculate the path identifier. For example, if
another test case also examines the path A→ B → F → H
in Fig.4(c), CSI-Fuzz will go through two marks m1 and m2.
CSI-Fuzz uses the marks m1 and m2 to calculate the path
identifier for path A→ B → F → H .

3 IMPLEMENTATION OF CSI-FUZZ

CSI-Fuzz can be built atop different coverage-guided
fuzzers, such as AFL [36] and AFLFast [8]. Currently we
develop CSI-Fuzz(AFL) and CSI-Fuzz(AFLFast) based on
AFL and AFLFast, respectively. For the convenience of us-
age, CSI-AFL is short for CSI-Fuzz(AFL) while CSI-AFLFast
is short for CSI-Fuzz(AFLFast). CSI-Fuzz utilizes the instru-
mentation tool Dyninst to insert function exit(N) at edges.
When a new edge is examined, the target program will
exit with a special code. Then, CSI-Fuzz removes the in-
strumentation of exit(N) at pre-determined edges or records
the targets of indirect edges. The next time when fuzzing
examines the same edges, the target binary will not exit.
CSI-Fuzz uses the exit code N = 66 for pre-determined
edges and N = 67 for indirect edges. These two exit codes
are chosen because they are different with the system ones.

Algorithm 1 shows how CSI-Fuzz conducts fuzzing.
After the initial setup (line 1), CSI-Fuzz instruments oracle

and tracer with different schemes (lines 2 - 4). The oracle
terminates at new edges while tracer records all edges along
the current execution path. Because oracle uses information
from tracer to update instrumentation, CSI-Fuzz instruments
them with the same edge information (e.g., edge identifiers).
Then CSI-Fuzz infinitely test the target binary until user
terminates fuzzing loop (line 6). In the infinite loop, if the
oracle terminates because of exit code 66 or 67, the oracle
examines a new edge. Then CSI-Fuzz sets the first new edge
as a path mark, and saves the associated test case as a new
seed (lines 8 - 10). After that, the tracer is invoked to trace
all edges along the same execution path exercised by the
current test case (line 11). With the edge information from
tracer, CSI-Fuzz removes the instrumentation at the pre-
determined edges that are traced by tracer (lines 16 - 17).
Because CSI-Fuzz uses path identifiers to support fuzzers
such as AFLFast, it adds path marks to oracle to calculate
path identifiers (line 18). To share the information of indi-
rect edges between oracle and tracer, the oracle updates the
indirect edges before it starts the forkserver (lines 19 - 21). A
forkserver forks a process to execute the target program so
that fuzzing does not need to get indirect edges repeatedly,
which saves time for fuzzing. As loops in programs are
complicated, CSI-Fuzz gives more mutation energy to test
cases that exercise loops (line 14). On the other hand, loops
are neglected in UnTracer.

3.1 Edge Coverage

CSI-Fuzz statically instruments oracle and crasher to differen-
tiate edges. When a new edge is examined, the instrumented
program exits with exit code 66 or 67. Usually, when a pro-
gram is executed successfully, the exit code is 0. Otherwise,
when it has some errors, the exit code will be 1. Therefore,
the special exit code 66 or 67 are not confused with system
exit code. As shown in Algorithm 2, different types of edges
are instrumented with different instructions.

Algorithm 2 Edge Instrumentation
Data: bt: the target block of current edge

Rt: the set of target blocks having been examined
1: Rt = ∅
2: if ISPREDETERMINEDEDGE() then
3: // N is the exit code
4: exit(N)
5: else if ISINDIRECTEDGE() then
6: Rt = GETEXISTINGTARGETS()
7: if bt not in Rt then
8: add bt to Rt

9: exit(N + 1)
10: end if
11: end if

At the pre-determined edges that are not examined, CSI-
Fuzz inserts exit(66) directly (lines 2 - 4). CSI-Fuzz first
assigns edge identifiers to each pre-determined edge and
stores the covered edge identifiers in shared memory. There-
fore, when tracer records the current examined edges in the
shared memory, oracle can quickly get the covered edges
via looking up the shared memory. When a new edge is
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0x7064a9:  instruction 1
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0x7065ac: jmp B
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(a) The original instrumented code. The in-
serted instructions are executed when edge AB
is examined.

0x7064a9:  jmp 0x7065ac

0x7064ab: instruction 2

…

0x7065ac: jmp B

block A

block B

inst_code

(b) Jumping over instrumentation. The first instruc-
tion is replaced by an unconditional jump.

Fig. 5. The removal of instrumentation. To remove the instrumentation at an edge, CSI-Fuzz replaces the first instruction of instrumentation with an
unconditional jump, which jumps over the entire instrumentation at the edge.

examined, CSI-Fuzz will remove the instrumentation at pre-
determined edges. For indirect edges, CSI-Fuzz instruments
at the call and jump sites of them. At a call or jump site, the
instrumentation gets all the historical target blocks before
they are compared with the current target block (lines 6 -
7). If the current target block does not exist in the recorded
ones, it is a new edge. Then, the current target block is added
into the historical ones before exiting with exit code 67 (lines
8 - 9). For an indirect edge, the addresses of both the source
block and the target block are recorded in a file. The list
of historical indirect edges is read into the memory before
forkserver. Therefore, the records of target blocks associated
with each source block can be searched in the list.

3.2 Removal Scheme

We use Dyninst to instrument target binaries and Dyninst
allows users to modify CFGs including edges [6]. In our
first implementation, we improve Dyninst to support re-
instrumentation, which instruments the instrumented target
binaries (i.e., oracle or crasher) when new edges are exam-
ined. However, the re-instrumentation has to instrument
target binaries from scratch, which has high overhead and
wastes much time. We then realise that Dyninst inserts
code snippets between blocks to accomplish instrumenta-
tion. Therefore, in our current implementation, we improve
Dyninst to help jump over the inserted snippets, which is
much faster than re-instrumentation. Specifically, we modify
Dyninst to output a mapping from an edge in the target pro-
gram to the address range of instrumentation for the edge.
When CSI-Fuzz removes instrumentation for an edge, it
looks up the instrumentation mapping to determine where
the instrumentation is and replaces the first instruction of an
inserted snippet with an unconditional jump, which jumps
to the end of the snippet. Therefore, the instrumentation
will not be executed even though the snippet still exists in
the instrumented binary.

Fig.5 exemplifies the removal of instrumentation at the
edge AB. Before removal, the instructions in the code
snippet are executed, as shown in Fig.5(a). Then, the first
instruction is replaced with instruction jmp 0x7065ac, which
jumps to the address 0x7065ac unconditionally. Therefore,
the code snippet is not executed when the edge AB is ex-
amined again. This scheme is faster than re-instrumentation

because it removes instrumentation by replacing some bytes
in the binary file.

3.3 Path Identifier
A queue is used in AFL to record information about the
seeds, such as the name and the location of the seed file.
CSI-Fuzz adds information of path identifiers into the queue
so that it can count the frequency of execution paths. A path
identifier is a hash value calculated based on path marks
along the path. When a test case exercises an existing path,
the oracle will write the current path marks into a shared
memory. A path mark is the edge identifier of the first new
edge in a path. Then CSI-Fuzz gets the bytes from the shared
memory, and calculates hash values for path identifiers.
Therefore, CSI-Fuzz knows which existing path is executed
by comparing the current path identifier with the identifiers
in the queue.

4 EVALUATION OF BINARIES

To evaluate the performance of CSI-Fuzz, we run exper-
iments to demonstrate the ability of CSI-Fuzz on edge
discovery, execution speed, and bug discovery. We choose
AFL [36], AFLFast [8] and UnTracer [22] to compare with
our CSI-Fuzz. We choose AFL and AFLFast because both
of them are edge-based fuzzing and they trace all test
cases during fuzzing, which reduces the execution speed.
On the other hand, we use UnTracer because it is a full-
speed fuzzing but is based on basic blocks. Because the
implementation of UnTracer1 incurred segment fault at the
time we ran our experiments, we re-wrote UnTracer based
on our CSI-Fuzz, and implemented it carefully to keep its
original functionality. We also develop a tester to count the
edges that have been examined by fuzzers. Specifically, we
use tester to instrument target binaries and use the seeds
retained by each fuzzer to get the covered edges. In the
experiments, we use 17 applications to evaluate the perfor-
mance of fuzzing. For AFL and AFLFast, we evaluate them
on binaries using two modes, QEMU mode and Dyninst
mode. The QEMU mode is provided by AFL and AFLFast
while the Dyninst mode is developed by us. We run the
experiments on Linux 18.04 with AMD Ryzen Threadripper
2990WX 32-Core Processor.

1. https://github.com/FoRTE-Research/UnTracer-AFL
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TABLE 1
The performance of CSI-AFL and CSI-AFLFast in edge discovery among 20 trials. CSI-Fuzz discovers up to 34% more edges than AFL and

AFLFast, and up to 60% more edges than UnTracer.

CSI-AFL CSI-AFLFast
Application +AFL-QEMU (%) +UnTracer (%) RSD (%) +AFLFast-QEMU (%) +UnTracer (%) RSD (%)

base64 0.67 2.37 0.13 0.03 2.34 0.00
cjson 0.57 22.88 0.00 3.46 22.28 0.70
djpeg 1.46 4.84 0.83 6.74 4.90 5.22

md5sum 0.70 0.93 0.00 1.60 0.93 0.00
readelf 34.29 56.65 5.76 32.03 59.58 6.10

tcpdump 21.23 46.94 7.85 15.64 42.46 9.21
uniq 2.64 3.82 7.79 0.00 1.15 0.00
who 0.37 0.30 0.13 0.83 0.80 0.34

4.1 Evaluation On QEMU Mode
AFL and AFLFast only provide QEMU, which is a sim-
ulator, to run binaries. Therefore, we use eight applica-
tions to evaluate the performance of fuzzing, and use the
QEMU mode for AFL and AFLFast. We use AFL-QEMU
and AFLFast-QEMU as the name of the QEMU mode of
AFL and AFLFast, respectively. We run each fuzzer on an
application for the same period of time, i.e., 24 hours, for 20
trials. For each experiment, we set 500 ms as the timeout,
i.e., the current execution will terminate if it takes more
than 500 ms. The eight popular applications from different
fields are listed in Table 2. The third column of Table 2 is
the number of pre-determined edges, the fourth column of
Table 2 is the number of indirect edges, and the fifth column
of the table is the number of basic blocks. For the eight
applications, the number of blocks is less than the number
of edges, indicating that edge collision may occur in block-
based fuzzing.

TABLE 2
Statistics of applications for QEMU mode, including pre-determined

edges, indirect edges, and basic blocks.

applications version #pre. #indi. #blocks

base64 LAVA-M 1696 7 1343
md5sum LAVA-M 1803 5 1434

uniq LAVA-M 1731 8 1369
who LAVA-M 6140 9 5031
cjson 1.7.7 1404 25 1083

readelf 2.3 28130 528 20306
djpeg libjpeg-9c 6236 452 4578

tcpdump 4.9.2 31312 3625 21958

Note: Instead of counting the indirect edges, we count the call sites of
indirect edges.

To count the number of edges, we use tester to instrument
target binaries and run the instrumented binaries with the
seeds retained by each fuzzer. Table 1 shows the edge
discovery of each fuzzer. The table shows that CSI-AFL dis-
covers up to 34.29% more edges than AFL-QEMU and up to
56.65% more edges than UnTracer. Meanwhile, CSI-AFLFast
finds up to 32.03% more edges than AFLFast-QEMU and up
to 59.58% more edges than UnTracer. Besides, Table 1 and
Table 2 indicate that UnTracer has a severe problem of edge
collision when fuzzing on programs such as readelf and
tcpdump. On applications readelf and tcpdump, CSI-
Fuzz discovers more than 40% more edges than UnTracer,
while the numbers are less than 5% on other applications

Fig. 6. The average number of examined edges. CSI-Fuzz discovers
more edges than their raw versions.

except cjson. On the other hand, for programs such as
base64, the number of edges discovered by UnTracer tends
to be close to CSI-Fuzz because such programs has a low
possibility of edge collision for UnTracer.

To further research on the performance of edge discov-
ery, we use the tester to count the number of condition-taken
edges, condition-not-taken edges, indirect jumps, and indi-
rect calls, which are shown in Fig.6. On average, CSI-Fuzz
discovers more edges than AFL and AFLFast. For example,
CSI-AFL discovers 38.12%, 32.85%, 17.3%, 23.42% more
condition-taken edges, condition-not-taken edges, indirect
jumps and indirect calls than AFL, respectively. Meanwhile,
the numbers are 35.33%, 29.59%, 28.42% and 20.49% when
comparing CSI-AFLFast to AFLFast.

To explain more details of edge discovery, Fig.6 shows
the results of different types of edges. In Fig.6, the number
of condition-not-taken edges is larger than the number of
condition-taken edges, which implies that it is hard for
fuzzing to generate test cases to solve path constraints.
Therefore, most test cases cannot satisfy conditions and go
through the condition-not-taken edges. This is not surpris-
ing because fuzzing generates test cases almost randomly. In
order to solve the path constraints in target programs, many
fuzzers [14], [24], [26], [30], [34] are designed. Note that,
our solution is not designed to replace the existing fuzzers,
but to cooperate with them and improve the performance
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Fig. 7. The execution speed relative to the mean value. The execution speed of CSI-Fuzz is higher than their raw versions.

of fuzzing. As for indirect edges, our CSI-AFL and CSI-
AFLFast discover more indirect jumps or calls than AFL,
AFLFast or UnTracer, which gives a higher chance for CSI-
Fuzz to find bugs in target programs. The result indicates
that our solution is effective at differentiating indirect edges.

The variability of edge discovery shows the random-
ness of fuzzers. The relative standard deviation (RSD)2 is
a standardized measure of the variability of a frequency
distribution. Table 1 shows the RSD of CSI-Fuzz in edge
discovery among 20 trials. The RSD is calculated from the
data that one fuzzer is evaluated on one application in 20
trials. It shows that CSI-Fuzz performs stably in terms of
edge discovery and most RSDs in Table 1 are smaller than
10%. Based on Table 1, it can be concluded that when the
number of covered edges is large, CSI-Fuzz performs much
better than UnTracer. When the number of covered edges is
small, the performance of fuzzers is close.

4.2 Evaluation On Dyninst Mode

The execution speed (i.e., average number of executions per
second) is one of the critical factors for fuzzing because a
higher execution speed saves time for fuzzing to execute
more test cases. Due to the native low execution speed
of QEMU mode, we develop AFL-Dyninst and AFLFast-
Dyninst to evaluate on the execution speed of fuzzers.
Because all the five fuzzers, i.e., CSI-AFL, CSI-AFLFast, AFL-
Dyninst, AFLFast-Dyninst and UnTracer, are implemented
based on Dyninst, the bias of the instrumentation tool
is eliminated. We then use nine applications, which are
from different fields and have different sizes, to evaluate
the performance of fuzzers, especially the performance of
execution speed. The sizes of the nine applications range
from about 200 edges to about 120,000 edges. Table 3 lists
the applications we use in the experiments. The meaning of
columns in Table 3 is as the same as the columns in Table
2. For the nine applications, the number of blocks is less
than the number of edges, indicating that edge collision
may occur in block-based fuzzing. We run each fuzzer on
an application for the same period of time, i.e., 6 hours, for
5 trials. For each experiment, we set 1000ms as the timeout.

The results of execution speed are shown in Fig.7, where
we remove top 10% and bottom 10% data to reveal the
median tendency of execution speed [22]. The median ten-
dency reduces the impact of system interference. For each
application, we convert the average speed of each fuzzer to

2. https://en.wikipedia.org/wiki/Coefficient of variation

TABLE 3
Statistics of applications for Dyninst mode, including pre-determined

edges, indirect edges, and basic blocks.

applications version #pre. #indi. #blocks

objdump 2.28 100357 2307 74394
exiv2 0.27.1 119634 2882 101479
nasm 2.14 23676 184 18173

pdftohtml 0.22.5 71296 1911 61241
bison 3.0.4 20800 226 16721
cflow 1.5 7488 58 5807

lou translate 3.2.0 299 1 240(liblouis)
listswf 0.4.8 8670 108 7494(libming)

asn1Parser 4.12 178 2 155(libtasn1)

Note: Instead of counting the indirect edges, we count the call sites of
indirect edges.

the relative execution speed with respect to the mean value of
five fuzzers. Fig.7 reveals that CSI-AFL and CSI-AFLFast
executes binaries faster than AFL-Dyninst and AFLFast-
Dyninst, respectively. Specifically, on average of the nine
programs, the execution speed of CSI-AFL is 1.6× higher
than AFL-Dyninst. On applications nasm and pdftohtml, CSI-
AFL executes binaries more than 2.5× faster than AFL-
Dyninst. On the other hand, CSI-AFLFast executes 1.4×
faster than AFLFast-Dyninst on average.

Fig.7 indicates that the execution speed of fuzzers
tends to be close to each other on small applications (e.g.,
asn1Parser and lou translate). On the other hand, for large
programs, CSI-AFL and CSI-AFLFast execute binaries much
faster than their raw versions. The reason is that tracing
small applications occupies a little time while large pro-
grams need much time to trace coverage. Note that, CSI-
Fuzz instruments extra code to deal with indirect edges.
Meanwhile, CSI-AFLFast spends extra time on determining
the path frequency of current execution. Therefore, the
execution speed of UnTracer is higher than CSI-AFL on
four applications, and higher than CSI-AFLFast on seven
applications. Although UnTracer conducts fuzzing faster
than CSI-Fuzz, it discovers much fewer edges than CSI-
Fuzz, which indicates that the block coverage has severe
problem of edge collision.

Fig.8 is the result of edge discovery, which shows the
average number of edges of five trials. For all the nine
applications, CSI-Fuzz discovers more edges than UnTracer
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Fig. 8. The average number of edges discovered over time. CSI-Fuzz discovers more edges than other fuzzers.

except on the application asn1Parser. All the five fuzzers
discover the same edges on asn1Parser because the applica-
tion is a small one. CSI-AFLFast discovers 289.8 more edges
than UnTracer on the application exiv2. On the other hand,
CSI-AFL discovers 342.0 more edges than UnTracer on the
application objdump. Besides, on six applications, CSI-Fuzz
discovers edges faster than UnTracer. On the three small
applications asn1Parser, lou translate and listswf, CSI-Fuzz
discovers edges as fast as the UnTracer does. Both Fig.8 and
Table 3 indicate that the block-based fuzzer UnTracer has
the problem of edge collision.

4.3 Bug Discovery
We analyse the crashes discovered by each fuzzer on all
the 17 applications listed in both Table 2 and Table 3, and
confirm bugs. Applications listed in Table 2 get their crash
results from the evaluation on QEMU mode. Meanwhile,
applications listed in Table 3 get their crash results from
the evaluation on Dyninst mode. We use afl-collect
from afl-utils [1] to remove the duplicated crashes and
manually analyse the remaining crashes to confirm bugs.
Table 4 shows the result of bug discovery during fuzzing.
The column of ave. is the average number of unique bugs
discovered during experiments. The column of uniq. is the
number of unique bugs found by each fuzzer. Both CSI-
AFL and CSI-AFLFast discover 6 unique bugs while other
fuzzers only find 5 bugs. On average, CSI-Fuzz exposes the

most bugs on each application, which indicates that CSI-
Fuzz is more effective and efficient to expose bugs.

Functions in a Crashing Trace File & Line
main main.c:350
readMovie main.c:265
blockParse blocktypes.c:145
parseSWF_DEFINESPRITE parser.c:2316
blockParse blocktypes.c:145
parseSWF_DOABC parser.c:3481
parseABC_FILE parser.c:3426
parseABC_CONSTANT_POOL parser.c:3191
parseABC_NS_SET_INFO parser.c:3083

Fig. 9. A bug in listswf. This bug is only found by CSI-Fuzz.

For the application listswf, CSI-Fuzz discovers a bug that
is not discovered by any other fuzzer, and the crashing
trace of the bug is shown in Fig.9. This bug causes a
segmentation fault when reading files. To trigger this bug,
the input is required to contain two block types, which are
SWF DEFINESPRITE and SWF DOABC, for the function
blockParse. Meanwhile, these two block types call their own
parsing functions (i.e., parseSWF DEFINESPRITE and pars-
eSWF DOABC) in the exact order as shown in Fig.9. There-
fore, other fuzzers fail to expose this bug because of edge
collision. Other fuzzers have the problem of edge collision
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TABLE 4
The number of bugs found by fuzzers. CSI-Fuzz discovers more bugs than others.

Application CSI-AFL CSI-AFLFast AFL AFLFast UnTracer
ave. uniq. ave. uniq. ave. uniq. ave. uniq. ave. uniq.

who 1.0 1 1.0 1 1.0 1 1.0 1 0.7 1
readelf 2.0 2 2.0 2 1.4 2 1.35 2 2.0 2

lou translate 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1
listswf 1.6 2 1.4 2 1.0 1 0.8 1 1.0 1
total 5.6 6 5.4 6 4.4 5 4.15 5 4.7 5

Note: ave. is the average number of unique bugs discovered by each fuzzer, and uniq. is the number of unique bugs found by each fuzzer.

so that they cannot retain the input that triggers the bug.
For example, UnTracer cannot trigger the bug when the two
functions parseSWF DEFINESPRITE and parseSWF DOABC
have been examined separately. Therefore, the input that
triggers the bug shown in Fig.9 will be discarded because
UnTracer does not discover new blocks in this scenario.
However, because CSI-Fuzz is fast and do not have the
problem of edge collision, it exposes the bug successfully.

5 RELATED WORK

Coverage-guided fuzzing is one of the most successful
fuzzing. It utilizes coverage information as feedback and
guides fuzzing to generate effective test cases. AFL [36]
utilizes bitmap to record coarse edge coverage, and traces
all the test cases. Many fuzzers are developed based on
AFL, but they are designed to resolve different challenges
other than the overhead of tracing test cases. AFLFast [8]
improves the speed of path discovery but uses the same
scheme to trace paths as AFL. MOPT-AFL [18] intends to im-
prove the mutation strategy with Particle Swarm Optimiza-
tion (PSO). However, MOPT-AFL only changes the mutation
scheduling strategy in AFL. kAFL [27] is designed for the
operating system (OS) kernel, which utilizes a hypervisor
and Intel’s Processor Trace (PT). The information from PT is
provided as feedback to guide AFL. OSS-FUZZ [13] scales
the AFL to large computing clusters. AFLGo [7] prioritizes
seeds that have a shorter distance to the target vulnerable
locations, integrating AFL via mainly replacing the seed
selection scheme. CollAFL [11] is proposed to resolve the
edge collision of AFL by using extended hash functions,
which improves the performance of AFL.

Many fuzzers are designed to solve path constraints in
target programs. Symbolic execution or concolic execution
is effective in solving path constraints. The first fuzzing
combined with concolic execution is proposed by Majumda
and Sen [19]. Later, Driller, SAFL and DigFuzz are devel-
oped to improve the effectiveness of fuzzing. Driller [30]
leverages concolic execution [28] to generate effective test
cases for AFL and to reach more coverage. SAFL [33] uses
symbolic execution to help fuzzing generate qualified initial
seeds, which can exercise rare and deep paths. DigFuzz [37]
first executes the target program utilizing AFL and then
prioritizes difficult paths for concolic execution to process.
However, Driller, SAFL and DigFuzz only integrate AFL
with symbolic execution or concolic execution but do not
pay attention to the problem of tracing all test cases. Pak
[23] follows this idea of hybrid fuzzing, utilizing limited
symbolic execution to find frontier nodes. QSYM [35] is

a fast concolic execution engine, which helps the hybrid
fuzzing scale to find bugs in complex software. However,
symbolic execution struggles on the problem of path ex-
plosion, limiting the performance of hybrid fuzzing. An-
other technique to improve coverage of fuzzing is the taint
analysis. Steelix [16], BuzzFuzz [12] uses taint tracing to
locate the input bytes that influence errors in programs.
Dowser [14] combines taint tracking and symbolic execution
to find deep vulnerabilities in programs. Developed based
on kAFL, REDQUEEN [5] optimizes fuzzing due to the
observation that parts of the input directly correspond to
the program state. In order to improve coverage, T-Fuzz
[24] dynamically detects path constraints when AFL can no
longer discover new coverage. Then these constraints are
removed from the target program, allowing more coverage
to be discovered.

Many fuzzers, such as AFL-GCC, CollAFL [11] and
Angora, are implemented based on the information from
source code. However, some fuzzers can run directly on
binaries, namely binary-only fuzzers. If a fuzzer can run
with target binaries, it can run with source code by merely
compiling them. AFL-Dyinst [31] and AFL-Pin [32] instru-
ment target binaries similarly to AFL-GCC with the same
fuzzing logic. VUzzer [26] analyzes target binaries within
static analysis tool IDA [15] and dynamic analysis tool
Pin. T-Fuzz transforms part of the target binary using angr
[29] and radare2 [25], which removes the sanity checks.
TaintScope [34] utilizes Intel Pin to accomplish dynamic
taint tracing on binaries. IDA, angr, radare2, Intel Pin and
Dyninst are some of the common tools that are used to
analyze target program binaries.

6 DISCUSSION AND FUTURE WORK

As Dyninst is an actively maintained tool, it may have bugs
to conceal some crashes that are bugs. To solve this problem,
we can improve Dyninst or use other instrumentation tools.
Another issue is about the path identifiers. Our solution of
path identifiers to differentiate paths still has some chances
that two paths collide. However, other solutions to count
the path frequency also causes path collision. For example,
AFL calculates a hash value for the current bitmap and
regard the hash value as the path identifier. This solution
has the problem of path collision because the bitmap does
not have the information of the order of edges. Note that,
up to now, researchers have not proposed fuzzers based on
path coverage due to the large overhead of tracing full path.
In the future, we will research on a more effective method
to set the path identifiers.
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7 CONCLUSION

In this paper, we studied the problem called edge collision
of full-speed fuzzing. The reason for edge collision is that
existing full-speed fuzzers are based on block coverage,
which lacks information of the order of blocks. Moreover,
we discuss that path identifiers are critical because some
fuzzing strategies are based on the path frequency. We
accordingly propose CSI-Fuzz to resolve edge collision of
full-speed fuzzing utilizing binary instrumentation. Binaries
instrumented via CSI-Fuzz can be executed at high speed,
allowing fuzzing to run more test cases. Then CSI-Fuzz sets
path identifiers to improve fuzz effectiveness. Experiments
show that this solution is effective and efficient at edge
discovery and bug exposure. CSI-Fuzz finds more edges
and bugs than AFL, AFLFast and UnTracer. As to the bug
discovery, CSI-Fuzz exposes a bug that other fuzzers do not
find because CSI-Fuzz executes binaries at high speed and
solves the problem of edge collision. Moreover, CSI-Fuzz
exposes more bugs during each run, implying the efficacy
of CSI-Fuzz. The execution speed of CSI-Fuzz is faster than
AFL and AFLFast. The execution speed of CSI-Fuzz is up to
2.5× higher than AFL-Dyninst.
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