
GVPROF: A Value Profiler for GPU-Based Clusters
Keren Zhou

Department of Computer Science
Rice University
Houston, USA

keren.zhou@rice.edu

Yueming Hao
Department of Computer Science
North Carolina State University

Raleigh, USA
yhao24@ncsu.edu

John Mellor-Crummey
Department of Computer Science

Rice University
Houston, USA

johnmc@rice.edu

Xiaozhu Meng
Department of Computer Science

Rice University
Houston, USA
xm13@rice.edu

Xu Liu
Department of Computer Science
North Carolina State University

Raleigh, USA
xliu88@ncsu.edu

Abstract—GPGPUs are widely used in high-performance com-
puting systems to accelerate scientific and machine learning
workloads. Developing efficient GPU kernels is critically impor-
tant to obtain “bare-metal” performance on GPU-based clusters.
In this paper, we describe the design and implementation of
GVPROF, the first value profiler that pinpoints value-related
inefficiencies in applications running on NVIDIA GPU-based
clusters. The novelty of GVPROF resides in its ability to detect
temporal and spatial value redundancies, which provides useful
information to guide code optimization. GVPROF can monitor
production multi-node multi-GPU executions in clusters. Our
experiments with well-known GPU benchmarks and HPC appli-
cations show that GVPROF incurs acceptable overhead and scales
to large executions. Using GVPROF, we optimized several HPC
and machine learning workloads on one NVIDIA V100 GPU. In
one case study of LAMMPS, optimizations based on information
from GVProf led to whole-program speedups ranging from 1.37x
on a single GPU to 1.08x on 64 GPUs.

Index Terms—High performance computing, Performance
analysis, Parallel programming, Supercomputers

I. INTRODUCTION

General-purpose graphics processing units (GPGPU) have
become a popular accelerator on HPC platforms. Among
the latest Top 500 list [1], more than 100 supercomputers
employ CPU+GPU heterogeneous architectures; at present,
two of the top three supercomputers—Summit and Sierra—
employ NVIDIA Volta GPUs to provide most of the FLOPS
on their compute nodes. Scientific software packages and
machine learning workloads leverage GPUs to deliver superior
performance.

Obtaining “bare-metal” performance on GPUs is challeng-
ing, especially for HPC applications. Performance tools such
as NVProf [2], Nsight Systems [3], Nsight Compute [4],
HPCToolkit [5], and TAU [6] help pinpoint code inefficiencies.
While these tools can identify common GPU inefficiencies
such as poor data locality in memory hierarchies, data/control
divergences, and various instruction execution stalls, they
overlook an important inefficiency category: redundant com-
putation and data movement involving the same values.

Prior work [7]–[9] has shown that values stored in memory
have temporal and spatial redundancies in CPU codes. Tempo-
ral value redundancy indicates that the same (or approximately
the same) value overwrites the same memory location. One
can exploit temporal value redundancy by removing redundant
computations and redundant data movement. Spatial value
redundancy indicates that nearby memory locations share the
same (or approximately the same) value. One can exploit
spatial value redundancy via memoization [10], [11] (i.e.,
remember the value computed and reuse it if the same com-
putation is performed on an adjacent location) and data com-
pression [7] (i.e., compress repeated values with a sparse data
structure). Value redundancy provides unique opportunities for
code optimization and approximate computing.

Value redundancies exist in GPU code as well. There have
been a surge of approaches [12]–[15] to exploit redundant
values on GPUs. However, most of them rely on special
hardware to identify and bypass redundant computation, which
does not apply to existing HPC systems. Alternatively, one can
use detailed simulation (e.g., GPGPUSim [16]) or compiler-
based instrumentation (e.g., CUDAAdvisor [17], LLVM [18])
to study redundant values. However, simulation-based ap-
proaches are either time-consuming or require the availability
of source code for recompilation, which makes them unsuit-
able for HPC applications that employ external close-sourced
libraries, such as cuBLAS [19] and cuDNN [20].

To complement and improve upon existing approaches,
we developed GVPROF. To the best of our knowledge,
GVPROF is the first value profiler for NVIDIA GPUs to
explore both temporal and spatial value redundancies in HPC
applications. GVPROF leverages NVIDIA’s Sanitizer API [21]
to instrument memory access instructions in GPU binaries.
GVPROF can identify memory accesses that manipulate re-
dundant values and provide detailed information, including
source code attribution with full calling contexts, data object
details, and various derived metrics. We evaluate GVPROF on
several benchmarks and applications. Most of the examples
we studied use a single GPU. However, we evaluated Sandia’s

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

1 I power[ty][tx] = power[index];
2 for (int i : iteration) :
3 temp_t[ty][tx] = temp[ty][tx] +
4 I step_div_Cap * (power[ty][tx] + ...

Listing 1: A GPU kernel in Rodinia [23] hotspot benchmark
has high temporal value redundancy. The loop invariant value
power[ty][tx] is repeatedly loaded from memory.

1 void dynproc_kernel(int *wall, ...) :
2 for (int i : iteration) :
3 I result[tx] = shortest + wall[index];

Listing 2: A GPU kernel in Rodinia [23] pathfinder benchmark
has high spatial value redundancy. The values in the array
wall are largely redundant.

LAMMPS [22] molecular dynamics simulator across several
nodes of the Summit supercomputer, showing that GVPROF
can monitor multi-GPU executions.

In the rest of this section, we describe examples that
exhibit value redundancies to motivate the need for GVPROF,
highlight our contributions, and outline the organization of the
rest of the paper.

A. Value Redundancies in GPU Kernels

We investigated two of the Rodinia [23] benchmarks to
illustrate the potential for exploiting value redundancies in
GPU kernels. Listing 1, part of a GPU kernel in hotspot, shows
that each thread loads the same value from power[ty][tx]
repeatedly in the loop, where ty and tx are GPU thread
indices and power[ty][tx] is loop invariant. Temporal
value redundancy occurs because the NVCC compiler fails
to promote the value into a register even with the highest (-
O3) optimization option. To eliminate the redundant loads, we
use a scalar p to cache power[index] at line 1, forcing the
value to be stored in a register, rather than shared memory, and
calculate step_div_Cap * p before the loop. This simple
optimization yields a 1.04× speedup.

Listing 2, part of the GPU kernel in pathfinder, shows
high spatial redundancies on line 3 associated with the array
wall. Further investigation showed that wall is a large array
with millions of elements. However, the element values are
always between one and ten assigned by its input-independent
initialization function; no updates to wall occur in the kernel
execution. We optimize pathfinder’s performance by demoting
the element type in wall from a 32-bit integer to a 8-
bit integer to improve the efficiency of coalesced memory
transactions. This change yields a 1.14× speedup. We can
employ a sparse data structure to compress redundant elements
in wall for additional performance.

In this paper, we study other examples from the Rodinia
benchmark suite, some of the CUDA SDK samples [24], and
four HPC and machine learning codes. We find that their load
and store operations produce up to 61% and 37% redundant

values, respectively, which motivates the need for GVPROF to
explore value-related redundancies in GPU codes.

It is worth noting that not all redundancies in an execution
need be eliminated. In our experience, a high fraction of
redundancy typically indicates performance inefficiencies and
demands a further investigation for code optimization.

B. Paper Contributions

In this paper, we make the following contributions:
• We systematically study temporal and spatial value redun-

dancies in GPU codes for both memory loads and stores,
and propose various techniques for optimization.

• We describe the design of GVPROF, the first value profiler
for NVIDIA GPUs (to the best of our knowledge). GVPROF
can monitor production HPC and machine learning applica-
tions to identify value redundancies.

• We design GVPROF to provide useful performance insights,
including derived redundancy metrics, full calling contexts,
and a data-centric view for instructions and data objects (i.e.,
arrays) involved in value redundancies.

• We minimize the overhead of GVPROF to support measure-
ment of large-scale executions by employing asynchronous
analysis and hierarchical sampling.

• We employ GVPROF on ORNL’s Summit supercomputer to
measure a multi-node multi-GPU execution of LAMMPS.
Guided by GVPROF, we improved the performance of
several HPC and machine learning workloads running on
a single V100 GPU and obtained nontrivial speedups.

C. Paper Organization

This rest of the paper is organized as follows. Section II
reviews related work and distinguishes GVPROF. Section III
describes the methodology of GVPROF. Section IV describes
details of implementation. Section V quantifies GVPROF’s
accuracy and overhead. Section VI presents the analysis of
four codes using GVPROF. Finally, Section VII presents our
conclusions and outlines some plans for future work.

II. RELATED WORK

There exist several approaches to exploring value redun-
dancies in CPU codes. Hardware-based approaches [25]–[31]
introduce new hardware components to detect and eliminate
redundant computations and memory operations. Software-
based approaches, such as RedSpy [8], LoadSpy [7], and
Witch [9] perform value profiling by leveraging binary rewrit-
ers (e.g., Intel Pin [32]) or performance monitoring units
and debug registers available only in CPU architectures.
GVPROF uses instrumentation-based measurement like Red-
Spy and LoadSpy. However, there are significant differences
in the approaches to identifying value redundancies because
GVPROF: (1) handles sophisticated thread coordination across
a massive number of SIMT threads on GPUs, (2) partitions
the framework into GPU data collection and CPU on-the-fly
analysis to avoid excessive memory overhead on GPUs, and
(3) understands the data type (e.g., float or integer) and unit
size (e.g., 32 or 64 bits) of values loaded or stored by memory

instructions using data flow analysis whereas CPU registers are
typically associated with fixed types.

On GPUs, prior work mostly explores value redundancies
via hardware approaches. Xiang et al. [13] design a hardware
instruction reuse buffer to skip instructions with uniform
values. Kim et al. [14] propose microarchitectural mechanisms
to handle instructions composed of either uniform or affine
value structures. Wang and Lin [12] introduce a method to
identify affine compute instructions and decouple them from
the regular SIMT instruction pipeline. Unlike such approaches
that utilize specialized hardware components to identify the
value redundancies, GVPROF does not require any hardware
extensions. GVPROF can be deployed in existing GPU-based
clusters or data centers.

The most closely-related work to GVPROF is the software
profiling techniques used on GPU architectures. NVIDIA
provides many tools [2]–[4] to measure performance metrics
from the kernel level to the whole program level. Intel [33]
provides GTPin to instrument GEN ISA binaries. Academic
efforts [5], [6], [34]–[37] provide similar insights but scale
to large HPC applications. Knobloch et al. [38] survey such
tools. Aforementioned profilers employ performance counters
or PC sampling [39] available in NVIDIA GPUs to provide
useful performance insights. However, none of these tools can
perform value profiling as GVPROF does.

While GVPROF leverages code from the open-source HPC-
Toolkit performance tools [5] to attribute metrics to CPU
calling contexts and presents GPU redundancy metrics us-
ing HPCToolkit’s hpcviewer GUI, GVPROF is distinct from
HPCToolkit in four ways. (1) GVPROF employs binary instru-
mentation for measurement of GPU programs; HPCToolkit
does not. (2) GVPROF uses GPU queues to communicate
GPU records to CPUs; in contrast, HPCToolkit uses NVIDIA’s
CUPTI API [40] to monitor and report GPU activities. (3)
GVPROF provides a measurement substrate that correlates
redundancy metrics with instruction addresses in GPU code;
HPCToolkit uses CUPTI for all fine-grain attribution of met-
rics. (4) GVPROF employs kernel sampling and block sam-
pling to reduce GPU measurement overhead; HPCToolkit uses
CUPTI as a measurement black box.

Compiler-based profilers can provide additional insights.
Yeh et al. [15] use an LLVM compiler pass to identify
redundant instructions. CUDAAdvisor [17] is able to monitor
every GPU memory access by adding instrumentation while
compiling with LLVM. CUDA Flux [41] leverages LLVM
to instrument GPU kernels for instruction characterization.
Unlike these approaches, GVPROF is compiler-independent
and can monitor external libraries that have only binary code
available.

Other tools employ binary-level approaches. Welton and
Miller [34], [42] inspect GPU APIs for performance issues
in HPC applications. They instrument CPU binary code and
check redundant data copies between CPUs and GPUs. Unlike
GVPROF, they do not investigate redundancies inside GPU
kernels. Moreover, their approaches require running a program
multiple times, whereas GVPROF only needs to run the

code once. GPU binary instrumentation frameworks, such as
NVBit [43], SASSI [44], and Sanitizer API [21] all from
NVIDIA, provide a rich set of APIs for instruction-level
inspection. They can serve as the foundation of building a
value profiler like GVPROF. GVPROF is built atop Sanitizer
API and is the first GPU value profiler to the best of our
knowledge.

III. METHODOLOGY

GVPROF works on heterogeneous systems with x86 or
POWER host CPUs and NVIDIA GPUs. It investigates the
values produced and used in GPU kernels and identifies the
following four value redundancies.

Definition III.1 (Temporal Load Redundancy). A memory
load L2 is redundant iff it loads a value v2 from address A,
and the last memory load L1 from A loads v1, where v1 = v2.

Definition III.2 (Temporal Store Redundancy). A memory
store S2 is redundant iff it stores a value v2 to address A, and
the last memory store S1 stores v1 to A, where v1 = v2.

Definition III.3 (Spatial Load Redundancy). A memory load
L2 is redundant iff it loads a value v2 from address A2, and
another memory load L1 loads v1 from address A1, where
v1 = v2, and A2 and A1 are in the memory range of a data
object allocated by a GPU memory allocation.

Definition III.4 (Spatial Store Redundancy). A memory store
S2 is redundant iff it stores a value v2 to address A2, and
another memory store S1 stores v1 to address A1, where v1 =
v2, and A2 and A1 are in the memory range of a data object
allocated by a GPU memory allocation.

To identify temporal value redundancies, GVPROF reasons
about the value generated by each memory instruction instance
and compares the last value at the target memory location
with the newly generated value. If the two values are the
same, GVPROF records the program counters of two involved
memory accesses 〈PCold, PCnew〉 as a pair of redundancy
and accumulates redundancy metrics with it. To identify spatial
value redundancies, GVPROF intercepts data allocations, and
associates memory accesses with data objects allocated in
GPU memory. If a memory access produces the same value
as a prior access to the same data object, a spatial redundancy
occurs. GVPROF records allocation contexts of the data object
and program counters of memory accesses 〈Cdata, PCaccess〉
and accumulates associated redundancy metrics.

To enable GVPROF for production HPC systems, we ad-
dress several challenges. (1) We employ an efficient data
collection mechanism to parallelize analysis and execution
on GPUs with a massive number of threads. (2) We adopt a
hierarchical sampling scheme to reduce measurement overhead
to a reasonable level. (3) As GPU assembly does not provide
access kind information for memory instructions (i.e., integer
or float of different sizes), we devise a novel bidirectional slic-
ing method to extract access kind information. We elaborate
on the details of our approach in the next section.

4/19/2020 15

GPU QueueGPU
Callbacks Runtime

Redundancy
Analyzer

GPU
CPU

Application Thread Analysis Thread
CPU Queue

Online Profiler

Offline
Analyzer

Fig. 1: Overview of GVPROF.

Utilization of GVPROF: GVPROF does not need any
manual effort to produce the profiling report. Moreover, it
runs a program once to identify all temporal and spatial
value redundancies for memory loads and stores. GVPROF
pinpoints performance inefficiencies and attributes them to full
calling contexts. As a dynamic tool, GVPROF may observe
different redundancy information in different parallel execu-
tions or runs with different inputs. One can use GVPROF
to profile HPC applications with typical inputs that produce
execution behaviors of interest. Programmers and compilers
can use the aforementioned techniques, such as memoization
and data compression to bypass the redundant computation.
In Section VI, we show some examples of optimizing value
redundancies with the information provided by GVPROF.

IV. IMPLEMENTATION

Figure 1 shows the major components of GVPROF: an
online profiler that monitors the GPU code execution to collect
data and perform online analysis, and an offline analyzer that
aggregates profiles from multi-GPUs and visualizes them in a
GUI. The online profiler further consists of three components.
The GPU callbacks instrument analysis functions in GPU bi-
naries to collect data during execution. The runtime system in
the address space of the monitored programs on the host CPU
manages the collected GPU data and gleans extra information
for analysis, such as memory allocation and calling contexts.
The redundancy analyzer spawns a helper thread to perform
necessary analysis on the GPU data (i.e., identifying value
redundancies in this paper) and passes analysis results to
the runtime system. Queues exist between the three online
components to interchange the data efficiently. The entire
architecture of GVPROF is modular, and one can easily extend
it for other analyses.

In the rest of this section, we elaborate on the design of
each online component and the offline analyzer.

A. GPU Callbacks for Data Collection

GVPROF’s GPU component consists of three parts: a set
of callbacks to collect data via instrumentation, a queue that
transfers data to CPUs for analysis, and a hierarchical sampler
that reduces monitoring overhead.

a) Callbacks: GVPROF utilizes Sanitizer API [21] to
instrument callback functions at each thread block entrance
and exit, as well as after each memory access instruction.
GVPROF uses the following approach for the memory access
callback functions. GVPROF can distinguish load and store
instructions. If a memory access instruction is a memory store,

GVPROF directly obtains the value provided by Sanitizer API.
Otherwise, GVPROF obtains the effective address accessed by
the instruction and then reads the value stored in the memory
by dereferencing the effective address according to the size
and type (i.e., global, local, or shared) of the instruction.
Typically, references to local and shared memory use 32-
bit addresses, while references to global memory use 64-bit
addresses. All information associated with this memory access,
such as program counter (PC), value, effective address, and
access size, forms a record, and GVPROF inserts the record
into the GPU queue. Values collected at this stage are a binary
sequence, with no type information. We refer to the values here
as raw values.

b) GPU queue: For each GPU stream, GVPROF creates
a queue shared between a GPU and a CPU to hold and transfer
records collected with the callbacks. To distinguish from other
queues, we call it the GPU queue. The size of the GPU queue
is configurable by users. By default, we set the queue with 72
MB, which is a good tradeoff between runtime and memory
overhead from our experiments.

Operations on the GPU queue are atomic. To minimize
contention, GVPROF only allows the first active lane in a
warp to request an empty slot in the queue. GVPROF then
uses a warp shuffle operation to broadcast the slot location to
every active lane in the warp. All active threads write their
records to the slot concurrently. All lanes are synchronized
when the writing is done. GVPROF uses the first active lane
to inform the GPU queue that a slot is filled. Besides memory
records, the GPU queue also holds records about thread block
entrances and exits.

Once the GPU queue is full, the GPU kernel is paused
while all records in the queue are transferred to the CPU. To
achieve this, GVPROF intercepts kernel launch APIs. Upon
each kernel launch, GVPROF locks the current stream to
prevent other CPU threads from submitting kernels to the
same stream. After a kernel is submitted to the GPU, GVPROF
leverages a priority stream to check whether the GPU queue
is full repeatedly. If full, GVPROF copies all records in the
queue to the CPU for further analysis, clears the queue, and
resumes kernel execution for more data collection. Meanwhile,
GVPROF tracks the number of active threads at thread block
exits. Once all threads are inactive (i.e., the current kernel is
finished), GVPROF releases the stream lock.

c) Hierarchical Sampling: While GPU memory over-
head of GVPROF is bounded by the size of the GPU queue,
the runtime overhead is proportional to the number of in-
strumentation callbacks invoked. We observed that most HPC

applications employ iterative and data-parallel programming
models; behaviors across different GPU kernel instances and
across different thread blocks are similar. GVPROF employs a
new hierarchical sampling mechanism to significantly reduce
runtime overhead but minimize measurement accuracy loss,
which we quantify in Section V. The hierarchical sampling
consists of kernel sampling and block sampling.

Kernel Sampling: Kernel sampling monitors a subset
of instances of the same GPU kernel. GVPROF uses the
launching context to uniquely identify a GPU kernel. For
example, if the same kernel is launched in two different calling
contexts, GVPROF treats them as two different “kernels”
instead of one. The calling context determination is done in
the runtime system on the host CPU, which is described in the
next section. GVPROF ensures that each kernel is sampled at
least once. GVPROF exposes a command line interface for
users to specify the sampling period.

Block Sampling: Even though GVPROF applies kernel
sampling, a large number of thread blocks used in a kernel
instance can still incur large overhead. Block sampling is
used in complement to the kernel sampling. Block sampling
randomly monitors thread blocks within a kernel instance. In
the GPU callbacks, GVPROF checks whether a block should
be monitored according to its block ID b. GVPROF makes
the decision with two more parameters: A sampling threshold
P defined by users and a random number r generated upon
each kernel launch. GVPROF monitors a block b only if
(b+ r)%P == 0.

B. Runtime System on Host CPU

The runtime system accepts data collected from GPUs via
the GPU queue and passes it to the analysis thread via the CPU
queue. Moreover, the runtime system determines the calling
context for each kernel launch, obtains source code attribution
(used for profile presentation), and maintains a list of active
data objects (used for the spatial redundancy analysis).

a) Collecting Calling Contexts and Attributing to Source
Code: The calling context at kernel launch is necessary for
kernel sampling and redundancy attribution. GVPROF inter-
cepts kernel launch APIs and determines the calling context
for each kernel launch. GVPROF uses a combination of
libunwind [45] and online binary analysis [46] to unwind the
call stack to glean calling contexts and maintain them in a
compact calling context tree [47]. Source code attribution is
critical for understanding what optimizations might be appli-
cable. However, Sanitizer API can only return the PC of the
monitored memory access as an absolute address in memory,
which cannot directly map to the source code. To address
this issue, GVPROF captures GPU binaries and obtains the
virtual accesses of all functions in the binaries via a Sanitizer
API sanitizerGetFunctionPcAndSize(). GVPROF
then uses function names to associate each function’s virtual
address with its offset in the GPU binaries. Once the runtime
system of GVPROF interprets the access records collected via
the GPU callbacks, it uses binary search to locate the func-
tion enclosing the program counter (PC) of each monitored

6/3/2020 36

0

1: Allocate(a)

1

a 2: Allocate(b)

2

a b 3: Allocate(c)

3

a b

c

Analyze(4)

3

a b

c
5

b c5: Free(a)

7

c7: Free(b)

5

b c

Analyze(6)

1 Allocate(a)

2 Allocate(b)

3 Allocate(c)

4 Kernel(a, b, c)

5 Free(a)

6 Kernel(b, c)

7 Free(b)

Operations

7

c

Memory Snapshots

Fig. 2: Following the operations in sequence, the figure shows
how memory snapshots are changed. After allocating a, b, c,
the analysis thread is woken up and tries to analyze kernel 4. It
first looks up data objects in snapshot 3, which is the closest to
kernel 4. Then all the memory snapshots before 3 are erased.
Likewise, after 7: Free(b) the analysis analyzes kernel 5. After
analysis, it erases snapshot 3 but keeps snapshots 5 and 7.

instructions. GVPROF translates each PC to its relative offset
in a GPU binary, which can then be mapped to the source
code using line mapping information in the GPU binary.

b) Tracking Data Objects on GPU: Monitoring data
object allocation and free is necessary for analyzing spatial
value redundancies. GVPROF uses Sanitizer API to intercept
standard GPU memory allocation and free operations to track
all active GPU data objects, including their allocated memory
ranges and allocation contexts. For custom allocators, we could
extend GVProf to leverage LLNL’s GOTCHA library [48] to
intercept and track allocations. The runtime system passes the
list of all active data objects to the analysis thread via the
CPU queue.1 Because GVPROF’s analysis thread is running
asynchronously, its runtime system needs to keep the list up
to date for all kernels.

GVPROF employs a novel approach – memory snapshots
to track data objects across kernels efficiently. A memory
snapshot contains all active GPU data objects. A new memory
snapshot is created when a GPU memory allocation (e.g.,
cudaMalloc) or free (e.g., cudaFree) occurs; all the
memory snapshots are stored in a map.2 GVPROF assigns a
unique ID opid for each snapshot and each kernel launch; opid
always increments. The creation of memory snapshots follows
two rules.
• Data allocation. When a GPU data object is allocated,

GVPROF forks a new memory snapshot from the latest
memory snapshot and inserts the new data object.

• Data reclamation. When a GPU data object is freed,
GVPROF forks a new memory snapshot from the latest
memory snapshot and removes the deleted data object.

Figure 2 shows a detailed example of how GVPROF maintains
memory snapshots.

1We call it the CPU queue to distinguish from the GPU queue.
2These maps could be implemented more efficiently with a partially

persistent data structure [49].

LDS.64 R14, [R20]

4/8/2020 39

DADD R2, R10, R12

1x<float.64>

MOV R12, R14 MOV R8, R14

STG.64 [R22], R8

Start Node End Node Transit Node

Dependency Edge Search Order

Fig. 3: An example of access kind analysis. The search starts at
STG.64 with Backward order until reaching LDS. The search
proceeds in Forward order and terminates at DADD.

When the analysis thread investigates the current memory
snapshot, it first obtains opidk of the current kernel launch and
then to get the memory snapshot with opidm, where opidm has
the greatest value but smaller than opidk in the map. After the
analysis, GVPROF removes memory snapshots whose opids
are smaller than opidk, except the one with opidm. A global
lock is used on the map to avoid data races between application
threads and the analysis thread. Since GVPROF shrinks the
map whenever the analysis is done, snapshot lookup is fast
even for complex code with tens of thousands of memory
allocations.

Tracking memory allocations only works for data allocated
in global memory. GVPROF cannot identify individual data
allocated in shared and local memory because there is no ex-
plicit allocation API to intercept. As a workaround, GVPROF
does not distinguish data objects allocated in the shared and
local memories.

C. Analysis Thread

GVPROF spawns a helper thread on the host CPU to
perform necessary analysis concurrently with the program ex-
ecution. The helper thread interchanges data with the runtime
system via the CPU queue. The helper thread accepts the
records collected on the GPU and sends back analysis results.
The helper thread extracts the value of an instruction’s raw
value according to its access kind (e.g., integer/float, 32/64
bits) and performs value analysis.

a) Extracting Values According to Access Kind: The raw
value obtained for each GPU memory access is a sequence of
binary bits, with no type information. A memory instruction
can interpret a raw value in different ways. For example, a
STS.64 instruction always stores 64-bit data to shared mem-
ory; the 64-bit data can be two 32-bit values or a single 64-bit
value to shared memory, and the data type can be either float
or integer. To distinguish values in different types, GVPROF
defines access kind to characterize memory accesses. An
access kind is a triple associated with one memory access:
unit size, vec size, and data type, where unit size indicates
the size of each value, vec size indicates the number of values
accessed, and data type specifies the value type, either float or

integer. Once GVPROF knows the access kind of each memory
instruction, it can correctly interpret the bit sequence as values.

The high-level idea is that GVPROF creates a dependency
graph for each function based on its def-use chains and
searches along the chains until access kind triples can be
identified. While it is similar to the techniques used for type
inference on CPU executables [50], our analysis is designed to
track arithmetic data types (i.e., float vs. integer) with special
handling for GPU instructions. Our analysis consists of three
components:
• Access kind defining instruction. GVPROF derives access

kinds from a subset of GPU instructions. On NVIDIA GPUs,
CONVERT instructions are used to convert between integer
and float, or the same data type of different sizes; operands
in FLOAT and INTEGER instructions are float and integer
data types, respectively. GVPROF can obtain the access kind
for a value by directly decoding these instructions.

• Dependency graph creation. GVPROF creates a dependency
graph for each function based on its def-use chains and
searches along the chains until access kind triples can be
identified.

• Bidirectional search. GVPROF employs both Forward and
Backward orders to traverse along def-use chains using
depth-first search. The search reverses the order when it
encounters a memory load or store instruction because we
do not track access kind through memory.
Figure 3 shows an example of the searching algorithm. As

the STG.64 instruction cannot tell its access kind, GVPROF
checks the def instruction—MOV instruction that defines R8.
Since the MOV instruction cannot tell its access kind, GVPROF
keeps searching for the def instruction that defines R14, which
is the LDS instruction. However, the LDS instruction is not
labeled with its access kind either; it depends on how R14 is
used. GVPROF then reverses the search direction to check
the uses of R14. Finally, GVPROF encounters the DADD
instruction, which uses a single float 64 value in its registers.
GVPROF propagates the access kind back to both LDS.64
and STG.64 instructions.

GVPROF uses program slicing in Dyninst [51] to create
def-use chains for each GPU function and performs access
kind analysis as a one-time procedure when a GPU binary is
loaded. Our approach does not guarantee to recover all access
kinds. For example, if the target register of a load instruction
is immediately stored to memory and has no further use,
GVPROF is unable to identify the load instruction’s unit size
and data type. In such a case, GVPROF can assign a default
unit size and data type predefined by users. In Section V,
we show that GVPROF can achieve high access kind analysis
accuracy without human intervention.

b) Value Redundancy Analysis: GVPROF identifies both
temporal and spatial value redundancies.

Temporal redundancy: GVPROF creates two tables for
each GPU kernel to detect temporal value redundancies, as
shown in Figure 4. The Last Seen Table records each thread’s
last access value at an address. The Redundant Pairs Table
records PC pairs involved in the redundancy. For each access

4/9/2020 57

Thread ID Address PC Value

<1, 1>

0x160 0xa0 1

0x200 0xa2 3.0

0x240 0xa4 5

0x300 0xb0 4

Source PC Dst PC Value Count

0xa0 0xd0 1 10

0xa0 0xc0 1 1

Address: 0x160
PC: 0xc0
Value: 1

1

2

Last Seen Table

Redundant Pairs

Access Record

Fig. 4: Data structures for detecting temporal value
redundancy. The Thread ID column contains a pair
〈blockId, threadId〉 that uniquely identifies each GPU thread.

record, GVPROF first checks whether its effective address is in
the Last Seen Table. If not, GVPROF inserts a record into the
table. Otherwise, GVPROF compares the current value with
the last value and reports redundancies in the Redundant Pairs
Table if the two values are the same. The address in the Last
Seen Table is then updated to the current address.

One challenge arises due to the large number of threads
used on GPUs. For instance, the total number of threads in
NVIDIA Volta V100 is up to 241; the Last Seen Table with all
thread records can easily overflow GPU memory. We minimize
the size of the Last Seen Table by leveraging the fact that the
number of active threads on a GPU is limited to the number of
stream multi-processors (e.g., 80 in Volta V100). Thus, upon
a BLOCK_EXIT record in the GPU data, GVPROF removes
records of all inactive threads from the Last Seem Table as
they are never used again.

Spatial redundancy: Similarly, GVPROF identifies and
accumulates spatial value redundancies. Instead of checking
values loaded from or stored to the same effective address,
GVPROF checks values within the same data object. GVPROF
leverages memory snapshots captured by the runtime system to
create a map from data allocation contexts to allocated object
memory ranges. GVPROF then attributes memory accesses to
the data objects that enclose the effective addresses of the
memory accesses. GVPROF reports the spatial redundancies
to data objects as well as the related memory accesses.

D. Offline Analysis

GVPROF’s offline component aggregates profiles from dif-
ferent GPUs, calculates redundancy metrics, and visualizes
results in a GUI.

a) Profile aggregation: Each CPU thread that invokes
GPU APIs produces a profile file, regardless of the number of
streams used, GVPROF coalesces profiles across CPU threads
and processes for the whole execution. Such a compact view
of profiles can scale the analysis of program executions to
a multi-node multi-GPU cluster. The coalescing procedure is
applied for the kernels with the same calling context, following
two rules: (1) temporal redundancy pairs 〈PC1, PC2〉 and
〈PC3, PC4〉 are merged if PC1 = PC3 and PC2 = PC4; and
(2) spatial redundancy pairs 〈Cdata, PC〉 and 〈C ′data, PC ′〉
are merged if Cdata = C ′data and PC = PC ′. The redun-
dancy metrics are also accumulated during coalescing. The
profile coalescing overhead grows linearly with the number of

CPU threads and processes used by the monitored program.
GVPROF can leverage the reduction tree technique [52] to
parallelize the merging process. GVPROF typically requires
<10 seconds to produce the aggregate profiles for all of our
case studies.

b) Metric derivation: GVPROF derives metrics for both
temporal and spatial value redundancies.

TRk,c =
TCk,c

Nk,c
(1)

Equation 1 calculates the temporal redundancy ratio of
a given context c (e.g., an instruction, a function, or the
entire kernel) for a kernel k as the faction of the number
of temporally redundant accesses TCk,c over the number of
memory accesses Nk,c. One can apply this equation to either
memory loads or stores.

SRk,o =
SCk,o

Nk,o
(2)

Equation 2 computes the spatial redundancy ratio for any
data object o in a kernel k as the fraction of the occurrences
of the value redundant accesses to object o over the total
number of accesses to o. Likewise, this equation also applies
to memory loads and stores.

c) Result presentation: GVPROF provides two views
for users. The profile view employs a Java-based GUI to
show redundancy metrics associated with the program source
code for different calling contexts. It is particularly useful to
pinpoint redundancies in specific contexts. Figure 7 shows a
snapshot of the GUI.

The memory view is a data-centric view that presents values
accessed at top redundant PCs for different data objects. One
can use the memory view to investigate the value distribution
of a specific PC or an entire data object.

E. Portability

The implementation of GVProf is modular. By changing its
instrumentation engine from NVIDIA’s Sanitizer API to Intel’s
GTPin [33], we could adapt GVProf to work on Intel GPUs.
At present, AMD does not provide an instrumentation tool for
its GPU binaries, so GVProf does not support AMD GPUs.

V. EVALUATION

We evaluated GVPROF on the Summit supercomputer at
Oak Ridge National Laboratory. Each Summit node has 2
POWER9 CPU processors and 6 NVIDIA Volta GPUs with
96GB GPU memory in total and with the following system
software: Linux 4.14.0, NVIDIA CUDA Toolkit 10.1.243,
NVIDIA Driver 418.116, and GCC 6.4.0. We evaluated
GVPROF on several Rodinia benchmarks [23], several CUDA
SDK samples [24], and the HPC applications described below.
• Darknet [54] is an open-source neural network framework.

We studied Darkent on the yolov3-tiny model [56] with
a cuBLAS backend.

Programs Redundancy ratios Sampling errors Overhead Access kind coverageTemporal load Temporal store Spatial load Spatial store w/o sampling w/ sampling
backprop 15.8% 0.0% 21.0% 5.2% 0.0% 66x 3.7x 100.0%

bfs 11.0% 0.0% 52.6% 15.2% 0.1% 31x 1.9x 100.0%
hotspot 3.6% 0.0% 12.4% 5.3% 0.2% 12.6x 2.6x 100.0%
sradv1 2.4% 0.0% 8.2% 3.3% 0.2% 8x 4.4x 100.0%
dct8x8 0.0% 0.0% 1.2% 0.6% 0.0% 443.8x 7.5x 99.5%
dwt2d 17.3±0.1% 7.9±0.1% 33.0% 24.9% 1.7% 5.2x 4.2x 100.0%
dxtc 32.3% 0.0% 1.1% 0.2% 0.1% 781.6x 13.1x 98.0%

reduction 45.9±2.6% 31.2±1.0% 60.8% 37.0% 4.8% 7.7x 7.7x 100.0%
pathfinder 5.1% 2.5% 1.9% 0.2% 0.0% 24.8x 1.7x 100.0%
histogram 0.0% 0.0% 12.2% 12.7% 0.0% 1188.2x 14.7x 100.0%

euler3d 0.0% 0.0% 28.8% 7.5% 0.1% 31.6x 1.8x 96.4%
lammps 7.9±0.1% 2.3±0.1% 15.7±0.2% 5.8±0.2% – – 44.7x –
darknet 5.4% 1.2% 9.0% 2.2% – – 29.4x –

quicksilver 27.3% 18.2% 43.4% 23.4% – – 769.2x –
laghos 1.9% 5.2% 18.0% 11.8% – – 28.1x –
average 11.7% 4.6% 21.3% 10.4% 0.7% 236.4x 62.3x 99.4%
median 5.4% 0.0% 15.7% 5.8% 0.1% 31x 7.5x 100.0%

TABLE I: Evaluation of redundancy ratios, sampling errors, profiling overhead, and access kind coverage for benchmarks and
applications. The redundancy ratios are averaged across five runs. We do not report standard deviations that are exactly zero.
We do not report the overhead and redundancy ratios of applications without sampling because GVPROF does not halt on these
applications when sampling is disabled. Moreover, we only report access kind coverage for benchmarks because obtaining
ground truth manually for real applications is tedious.

Redundancy
Type Redundancy Metrics Problems Optimization Methods Programs Inputs Execution time Speedup

Spatial 100% Single value Read/write constant values Constant replacement

LAMMPS [22] bench/lj.in 2.71s 1.47x
/src/USER-INTEL/TEST/in.intel.lj 11.20s 1.37x

Laghos [53] square01 quad.mesh 17.22ms 1.00x
cube01 hex.mesh 82.17ms 0.99x

sradv1 [23] 502 458 21.57us 1.46x
1004 916 75.48us 1.26x

Spatial High ratio (≥ 50%)
single value Waste compute resources Conditional load/store

Darknet [54] yolov3-tiny.cfg 28.79us 1.60x

backprop [23] 65536 29.57us 1.93x
131072 54.90us 2.42x

Spatial Frequent occurrences of
a few distinct values Waste memory bandwidth Compression pathfinder [23] 100000 100 20 104.46us 1.14x

100000 200 20 202.90us 1.14x

Spatial Close values Waste compute/memory
resources Approximate compute hotspot [23] data/temp 512 16.84us 1.29x

Temporal Memory access in a loop Failed register promotion Scalar replacement
dxtc [23] data/lena std.ppm 1.66ms 1.02x

hotspot [23] data/temp 512 16.84us 1.04x

Temporal Memory access in
a device function Missing function inlining Inline substitution Quicksilver [55] default input 1.16s 1.35x

CORAL-p1.inp 42.27s 1.68x

TABLE II: Performance insights into value redundancies produced by GVPROF. We report kernel time speedup for all cases
except for LAMMPS, which uses whole program speedups. We evaluated program speedups with different inputs if available.

• Quicksilver [55] is a DOE proxy application for solving a
dynamic Monte Carlo particle transport problem. Quicksil-
ver has a single big GPU kernel, in which a number of
device functions are used. We studied Quicksilver with its
default input released with the software.

• LAMMPS [22] is a molecular dynamics code for large-
scale materials modeling. LAMMPS uses Kokkos [57] to
provide an abstraction for different accelerators. We pro-
filed LAMMPS using its Lennard-Jones liquid benchmark
released together with the software package.

• Laghos [53] is a DOE mini-app that solves the time-
dependent Euler equations of compressible gas dynamics.
We ran Laghos with its square01_quad.mesh input.

In the remaining section, we describe insights based on the
analysis results reported by GVPROF, analysis accuracy, and
overhead on a single GPU execution. One exception is the
scalability evaluation of GVPROF in Section V-C, for which

we used up to 64 GPUs across 11 Summit nodes.

A. Value Redundancy Analysis

Table I quantifies temporal and spatial value redundancy
ratios for both memory loads and stores throughout the entire
program execution. We can see that value redundancies are
common in GPU codes, both benchmarks and applications.
Table II summarizes the insights we obtained using GVPROF
to analyze programs with high value redundancy ratios. Note
that the insights are based on the statistics associated with
specific contexts in the profile view and the memory view,
rather than the overall metrics presented in Table I. In the rest
of this section, we overview these insights to highlight the root
causes of value redundancies. We analyze the four applications
in detail in Section VI.

a) Insights for spatial value redundancy: GVPROF
quantifies spatial value redundancies, which suggests the fol-
lowing four optimizations described in Table II.

b
a
ck

p
ro

p

h
o
ts

p
o
t

d
x
tc

sr
a
d

v
1

p
a
th

fi
n

d
e
r

L
A

M
M

P
S

Q
u

ic
k
si

lv
e
r

L
a
g
h

o
s

D
a
rk

n
e
t0.0

0.5

1.0

1.5

2.0

S
p

e
e
d

u
p

Fig. 5: Speedups averaged across ten runs with error bars.

• When the spatial value redundancy ratio of an array is
100%, indicating accesses to this array’s elements have the
same value. One can hoist this value to a scalar. LAMMPS,
Laghos, and sradv1 fall into this category.

• When the spatial value redundancy ratio of an array is high
(> 50%) with a single value, one can memoize the results
and skip computations on the same value. Darknet, dwt2d,
and backprop are in this category.

• When the spatial value redundancy ratio of an array is high
due to the frequent occurrences of a few distinct values,
one can compress either the element type (e.g., from 32-
bit integer to 8-bit integer) or the array itself with a sparse
format. pathfinder is in this category.

• When the spatial value redundancy ratio of an array is high
due to approximate values, if approximate computing is
allowed, one can bypass the computation of similar values.
hotspot belongs to this category.

b) Insights for temporal value redundancy: There are
two possible optimizations for temporal value redundancies.
First, if the redundancies occur in a loop, a compiler may
fail to promote loop-invariant values into registers due to
unknown loop trip count, missing access index constraints,
or register limitations. One can cache the values explicitly
to avoid repeated memory loads and stores. Laghos and dxtc
are in this category. Second, if the redundancies occur at a
function’s prologue or epilogue, it means invoking the function
involved storing or loading redundant values on local memory
to reserve registers. One can inline the function if possible,
to avoid redundant local memory operations. Quicksilver is in
this category.

c) Optimization workflow: One can start with the profile
view to check GPU code with high redundancies. Next, one
can leverage the memory view to track down redundant
values and instruction PCs at these hotspots. Finally, one can
apply optimizations suggested in Table II for some common
redundancy patterns.

d) Optimization speedup analysis: Figure 5 presents the
averaged speedups of codes we studied. For some codes, the
performance improvements from eliminating value redundan-

1 2 4 8 16 32 64
of GPUs

10

20

30

40

O
v
e
rh

e
a
d

Kernel sampling + Block sampling

Block sampling

Fig. 6: Scalability of GVPROF’s overhead across multiple
GPUs and multiple Summit nodes.

cies were small (e.g., 1.02× speedup of dxtc); for other codes,
eliminating value redundancies had a much larger effect (e.g.,
2.42× speedup of backprop). In general, eliminating value
redundancies offers an opportunity for improving performance.
However, the speedup from eliminating redundancies in an
execution depends on the program and in some cases its input
data. In practice, applications can spend much time on GPUs.
For some programs, we see large speedups. For example, our
optimizations reduce Quicksilver’s kernel time from 42.27s to
25.11s.

B. Analysis Accuracy

a) Accuracy for access kind analysis: To quantify the ac-
curacy of GVPROF’s access kind inference, we define access
kind coverage as the ratio of the number of correctly identified
memory instructions over the total number of memory access
instructions in all GPU kernels for a given program; 100%
coverage means our access kind inference is always correct.
We obtained the ground truth of access kind for an instruction
by manually checking every memory instruction in a GPU
binary. It is worth noting that we evaluated coverage only for
benchmarks because obtaining the ground truth for large ker-
nels in applications is tedious and error-prone. Table I shows
that our bidirectional slicing method for access kind inference
yields high access kind coverage. Accuracy losses arise mainly
due to two causes. On the one hand, nvdisasm as the
foundation of GVPROF fails to decode machine instructions
in GPU binaries (e.g., euler3d). On the other hand, GVPROF’s
access kind inference fails on some load instructions whose
values are immediately stored to memory with no further use
(e.g., dxtc and dct8x8).

b) Accuracy of block sampling: Table I shows the block
sampling errors with the default sampling period 50, quan-
tified as the average across four redundancy ratios with the
comparison to the ratios with no sampling enabled. GVPROF
chooses this default sampling period as a good trade-off
between accuracy and overhead from multiple experiments
with different sampling periods, including 2, 3, 4, 8, 10, 16,
32, 50, 64, and 100. From the table, we can see that GVPROF
yields high sampling accuracy. Benchmark reduction has the
highest sampling error (4.8%) because it has imbalanced work
distribution across blocks.

Fig. 7: The GUI of GVPROF shows the calling context of the fill kernel invocation with high spatial store value redundancy.
The top pane shows the source code; the bottom left pane shows the full calling contexts; and the bottom right pane displays
the redundancy count (SPATIAL_WRITE_RED) and the redundancy ratio (SPATIAL_WRITE_RED_RATIO) of each context
(e.g., source lines and kernels).

c) False positives: GVProf has no false positives; that is,
all the value redundancies identified are real, measured with
fine-grained instrumentation of all memory loads and stores
in GPU kernels. However, not all value redundancies can or
should be eliminated. Sometimes, redundancies may be input-
dependent. Sometimes removing redundancies may be more
costly than leaving them alone.

C. Measurement Overhead

Table I shows that without sampling, GVPROF can incur
1000× overhead and even more in HPC codes. This high
overhead is due to the large number of GPU access records
generated by the massive number of memory accesses for
monitoring and the use of a large number of blocks for com-
putation. Fortunately, GVPROF’s block sampling mechanism
significantly reduces the overhead to a reasonable level, which
is typically 7.5× for benchmarks. HPC applications suffer
from higher overhead due to their complex kernel designs,
but it is worth noting that without sampling, GVPROF runs
forever to collect profiles. To further reduce the overhead for
HPC applications that consist of tens of thousands of kernel
instances, GVPROF can employ kernel sampling.

Typically, the overhead of GVPROF does not change pro-
gram behaviors. While a program that performs event-driven
processing as messages arrive from its communication partners
might have its behavior affected by the order of message
arrival, in most cases, we do not believe that the characteristics
of GPU computations performed by a program would often be
affected by such effects. We show standard deviations from
five runs of our redundancy measurements in Table I. The
small standard deviations of our redundancy measurements
indicate the small measurement variance across different runs.

D. Multi-GPU

Figure 6 shows the scalability of GVPROF. We evaluated
GVPROF in a strong scaling experiment with LAMMPS
running up to 64 GPUs across 11 Summit nodes. We ran
LAMMPS with MPI, with each MPI process using a GPU.

As shown in the figure, GVPROF’s overhead drops with more
GPUs when using block sampling because more processes
are involved in processing the measurement data from the
fixed amount of kernel computation (due to strong scaling),
which accelerates online analysis. Kernel sampling can further
reduce the overhead and converge with block sampling when
using 64 GPUs. Notably, kernel sampling’s overhead increases
when moving from one GPU to multiple GPUs because every
process must sample every kernel calling context at least once.
As the number of GPUs increases, the workload of each
process is reduced due to strong scaling.

VI. CASE STUDIES

With the information from GVPROF, we further optimized
HPC and machine learning applications, such as Darknet
[54], Quicksilver [55], LAMMPS [22], and Laghos [53]. Like
Section V, we profiled and optimized these applications on
Summit with a single GPU. All applications were compiled
with -O3 optimization.

A. Darknet

Darknet implements convolution using the lowering
method [58], which transforms each image in a mini-batch
into an input matrix, utilizes cuBLAS to perform matrix mul-
tiplication with a filter matrix. As shown in Figure 7, GVPROF
reports 28.9% spatially redundant stores in a fill kernel with
100% redundancy ratio. The fill kernel is applied before
matrix multiplication A × B to set the output matrix C to
zeros. The computation follows the format: C ← A×B+C,
which introduces many spatial redundancies on loading C.
Thus, we removed the fill kernel invocation and computed
C ← A × B to avoid redundant loads and stores. This
optimization yields a 1.02× speedup for the entire program.

GVPROF further pinpoints that 99% spatially redundant
loads are in cuBLAS’s matrix multiplication kernel. To in-
vestigate the root cause, we obtained the redundancy ratio
for each convolution layer individually and found that the
first convolution layer incurs the most spatial redundancy.

1 bool CollisionEvent(..) :
2 for (int isoIndex = 0; isoIndex < numIsos; isoIndex++) :
3 for (int reactIndex = 0; reactIndex < numReacts;
4 reactIndex++) :
5 currentCrossSection -= macroscopicCrossSection(
6 isoIndex, reactIndex, ...);
7
8 double macroscopicCrossSection(
9 int isoIndex, int reactIndex, ...) :

10 microscopicCrossSection = monteCarlo->_nuclearData->
11 I getReactionCrossSection(reactIndex, isoIndex, ...);
12
13 double NuclearData::getReactionCrossSection(
14 int reactIndex, int isoIndex, int group) :
15 I qs_assert(isoIndex < _isotopes.size());
16 I qs_assert(reactIndex < _isotopes[isoIndex]._species[0].
17 _reactions.size());
18 return _isotopes[isoIndex]._species[0].
19 I _reactions[reactIndex].getCrossSection(group);

Listing 3: Temporal value redundancies in Quicksilver.

GVPROF shows that 50% values loaded from shared memory
in this kernel are zeros. This is because cuBLAS uses a
general tiling approach for tall-and-thin matrices in the first
convolution layer of yolov3-tiny, which causes many zero
values in shared memory. For optimization, we employed a
fast implementation for tall-and-thin matrix multiplication [59]
to better tile matrices. This optimization reduced spatially
redundant loads from 41% to 6%, yielding a 1.60× speedup
for the matrix multiplication kernel.

B. Quicksilver

GVPROF identifies both temporal and spatial value redun-
dancies in Quicksilver.

a) Optimizing temporal value redundancies: Listing 3
shows the code that GVPROF highlights for two tempo-
ral redundancies. The first one is the qs_assert on
line 19 and 20, which account for 20.9% of total tem-
porally redundant loads. Further investigation shows that
the function getReactionCrossSection enclosing the
two assertions is called in a loop nest on line 5. Because
isotope_index and _isotopes are both loop invariant,
we can either hoist the assertions out of the loop or remove
the assertions in the released version. We removed the two
assertions and obtained a 1.10× speedup for the kernel.

GVPROF also pinpoints the epilogue of the
function getReactionCrossSection and its caller
macroscopicCrossSection (both shown in Listing 3),
accounting for 30.2% of total temporally redundant loads.
This is because these two functions are called in a loop
nest, introducing redundant local memory store and load
operations to spill and restore unchanged values, such as loop
trip count (e.g., numIsos), to make registers available for
the callee. We inlined these two functions into their caller to
avoid redundant local memory accesses and obtained an extra
1.10× speedup to the kernel.

b) Optimizing spatial value redundancies: GVPROF
identifies 61.5% spatial store redundancies in the class
constructor for MC_Distance_To_Facet (not shown
in the paper), in which values are initialized to zeros.

4/18/2020 62

794: loop at create_atoms.cpp
795: loop at create_atoms.cpp

796: loop at create_atoms.cpp
797: loop at create_atoms.cpp

831: LAMMPS_NS::AtomVecAtomicKokkos::create_atom(int, double*)
795: LAMMPS_NS::AtomVecAtomicKokkos::grow(int)

75: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
232: Kokkos::DualView(…)

679: Kokkos::resize(…)
74: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
73: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
69: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
70: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
71: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
68: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)

21.4%
21.4%
21.4%
21.4%
21.4%
21.4%

6.0%
6.0%
6.0%
6.0%
4.1%
1.3%
1.3%
1.3%
1.3%

398: loop at atom_vec_atomic_kokkos.cpp:
398: LAMMPS_NS::AtomVecAtomicKokkos::grow(int)

75: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
74: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
73: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
69: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
70: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
71: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)
68: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)

30.9%
30.9%

9.6%
7.4%
6.7%
2.1%
2.1%
1.8%
1.2%

Hotspot 1

Hotspot 2

Fig. 8: Two hot spatially redundant stores in
LAMMPS due to function Kokkos::resize.
Kokkos::resize is invoked from every call to
LAMMPS_NS::MemoryKokkos::grow_kokkos. Note:
We collapse long function names generated by Kokkos
template wrappers.

Spatial store redundancy is high because an array of
MC_Distance_To_Facet is constructed repeatedly
in a loop (loop1). There are three data members in
MC_Distance_To_Facet: distance, facet,
and subfacet. However, in loop1, facet and
subfacet are never used so we can compress the
MC_Distance_To_Facet array to a double array for
distance only to reduce spatial store redundancy.

After this optimization, GVPROF identifies the distance
array accounting for 10.5% spatially redundant loads in an-
other loop (loop2). GVPROF reports that a large double value
assigned in loop1 dominates values in the array. Further
investigation shows that Quicksilver uses the distance array
to save the nearest distance to each facet of a cell in loop1,
and finds the minimum value of the array in loop2 and
discards the distance array. We optimized the code by
fusing the two loops and compressing the distance array to
a single variable to hold the minimum value. The two spatial
redundancy optimizations yield a 1.12× additional speedup.

c) Optimization summary: To summarize, our optimiza-
tion guided by GVPROF on both temporal and spatial value
redundancies yields a 1.35× speedup to Quicksilver’s kernel.

C. LAMMPS

GVPROF reports 52.3% spatial value redundant stores are
in Kokkos::resize kernel under two hot calling contexts,
as shown in Figure 8. Kokkos::resize is called repeatedly
in loop nests to increase the size of multi-dimensional arrays.
Resizing an array requires allocating a new piece of memory
and initializing it to zero, thus, resulting in spatial store
redundancy. Since arrays grow dynamically, LAMMPS defines
an array growth factor that indicates how much additional
space will be added to a dynamic array each time it resizes.
To avoid frequent allocation and initialization, we increased

GPUs 1 2 4 8 16 32 64
lj.in 1.47× 1.31× 1.30× 1.23× 1.04× 1.05× 1.05×

in.intel.lj 1.37× 1.39× 1.37× 1.33× 1.20× 1.19× 1.08×

TABLE III: Speedups of LAMMPS on varying numbers of
GPUs.

the default factor at the two hotspots from 0.01 to 0.1 and 0.8
respectively.

Table III shows the speedups of this optimization for two
different inputs. With one GPU, we obtained a 1.47× speedup
and a 1.37× speedup for the entire program. When the
workload is partitioned over more GPUs, speedup falls off but
always remains greater than 1×. As the workload is distributed
across more processes, the size of the arrays on each process
is reduced so that the benefit of using a large array growth
factor decreases. It is also worth noting that the speedups
for executions with the larger input (in.intel.lj) fall off more
slowly than those for the smaller input (lj.in) as the workload
is partitioned across a larger number of GPUs.

D. Laghos

GVPROF identifies a temporal load redundancy due to
memory aliases in cuKernelDot kernel that performs a
dot product of vectors x and y. In some context, x and y
point to the same array, so the same values are loaded twice.
As an optimization, we can check whether x and y point
to the same array. If yes, we only load the value once for
the computation. Although the optimization did not result in
a significant speedup for the input we studied, other inputs
that cause manipulation of larger arrays may benefit from the
redundancy elimination.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces GVPROF, the first value profiler
on GPUs, to detect value-related redundant computation in
HPC applications. GVPROF identifies temporal and spatial
value redundancies for both memory loads and stores and
provides detailed information that is useful to guide opti-
mization, including calling contexts, data objects, and source
code attribution. To monitor production HPC applications,
GVPROF employs various optimizations to reduce its over-
head, especially for multi-GPU and/or multi-node executions.
With insights provided by GVPROF, we were able to optimize
several HPC and machine learning code bases, most notably
improving the whole-program performance of LAMMPS.
GVPROF [60] is open-source and has been employed on the
Summit supercomputer.

We envision two enhancements to GVPROF. First, we will
explore value redundancies across GPU kernels. Second, we
will parallelize the analysis in GVPROF’s helper thread to
reduce tool’s overhead.

VIII. ACKNOWLEDGEMENT

We would like to thank Aurelien Chartier at NVIDIA for
fixing bugs and providing new functions in Sanitizer API.

We also thank the reviewers for proofreading the paper and
providing helpful comments.

This research was supported by Ken Kennedy Institute
ExxonMobil Graduate Fellowship and by the Exascale Com-
puting Project (17-SC-20-SC) - a collaborative effort of the
U.S. Department of Energy Office of Science and the Na-
tional Nuclear Security Administration. This work is partially
supported by a Google gift and a Google Faculty Research
Award, as well as the Thomas F. and Kate Miller Jeffress
Memorial Trust, Bank of America, Trustee and any specified
Program donor (if applicable). This research used resources
of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

REFERENCES

[1] (2019) Top 500 List. [Accessed March 26, 2020]. [Online]. Available:
https://www.top500.org

[2] (2019) The user manual for nvidia profiling tools for optimizing
performance of cuda applications. [Accessed March 26, 2020].
[Online]. Available: https://docs.nvidia.com/cuda/profiler-users-guide

[3] NVIDIA Corporation. (2020) Nvidia nsight systems. [Accessed March
26, 2020]. [Online]. Available: https://developer.nvidia.com/nsight-
systems

[4] ——. (2020) NVIDIA Nsight Compute. [Accessed March 26, 2020].
[Online]. Available: https://developer.nvidia.com/nsight-compute

[5] K. Zhou, M. Krentel, and J. Mellor-Crummey, “A tool for top-down
performance analysis of gpu-accelerated applications,” in Proceedings
of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2020, pp. 415–416.

[6] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
The International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[7] P. Su, S. Wen, H. Yang, M. Chabbi, and X. Liu, “Redundant loads: A
software inefficiency indicator,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 982–993.

[8] S. Wen, M. Chabbi, and X. Liu, “Redspy: Exploring value local-
ity in software,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2017, pp. 47–61.

[9] S. Wen, X. Liu, J. Byrne, and M. Chabbi, “Watching for software inef-
ficiencies with witch,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2018, pp. 332–347.

[10] J. Mostow and D. Cohen, “Automating program speedup by deciding
what to cache,” in Proceedings of the 9th International Joint Conference
on Artificial Intelligence - Volume 1, ser. IJCAI’85. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1985, p. 165–172.

[11] L. Della Toffola, M. Pradel, and T. R. Gross, “Performance problems
you can fix: A dynamic analysis of memoization opportunities,” in
Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA 2015. New York, NY, USA: Association for
Computing Machinery, 2015, p. 607–622. [Online]. Available:
https://doi.org/10.1145/2814270.2814290

[12] K. Wang and C. Lin, “Decoupled affine computation for simt gpus,”
ACM SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 295–
306, 2017.

[13] P. Xiang, Y. Yang, M. Mantor, N. Rubin, L. R. Hsu, and H. Zhou,
“Exploiting uniform vector instructions for gpgpu performance, energy
efficiency, and opportunistic reliability enhancement,” in Proceedings of
the 27th international ACM conference on International conference on
supercomputing, 2013, pp. 433–442.

[14] J. Kim, C. Torng, S. Srinath, D. Lockhart, and C. Batten, “Microarchi-
tectural mechanisms to exploit value structure in simt architectures,” in
Proceedings of the 40th Annual International Symposium on Computer
Architecture, 2013, pp. 130–141.

[15] T. T. Yeh, R. N. Green, and T. G. Rogers, “Dimensionality-aware redun-
dant simt instruction elimination,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1327–1340.

[16] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software, 2009, pp. 163–174.

[17] D. Shen, S. L. Song, A. Li, and X. Liu, “Cudaadvisor: Llvm-based
runtime profiling for modern gpus,” in Proceedings of the 2018 Inter-
national Symposium on Code Generation and Optimization, 2018, pp.
214–227.

[18] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86.

[19] NVIDIA Corporation. (2020) NVIDIA cuBLAS. [Accessed March 26,
2020]. [Online]. Available: https://developer.nvidia.com/cublas

[20] ——. (2020) NVIDIA cuDNN. [Accessed March 26, 2020]. [Online].
Available: https://developer.nvidia.com/cudnn

[21] ——. (2020) NVIDIA Compute Sanitizer. [Accessed March
26, 2020]. [Online]. Available: https://docs.nvidia.com/cuda/compute-
sanitizer/index.html

[22] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Sandia National Labs., Albuquerque, NM (United States), Tech.
Rep., 1993.

[23] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 2009, pp. 44–54.

[24] NVIDIA Corporation. (2020) NVIDIA CUDA Samples. [Accessed
March 26, 2020]. [Online]. Available: https://developer.nvidia.com/cuda-
downloads

[25] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value
Locality and Load Value Prediction,” in Proceedings of the
Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS VII.
New York, NY, USA: ACM, 1996, pp. 138–147. [Online]. Available:
http://doi.acm.org/10.1145/237090.237173

[26] M. H. Lipasti and J. P. Shen, “Exceeding the Dataflow Limit via Value
Prediction,” in Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, ser. MICRO 29. Washington, DC,
USA: IEEE Computer Society, 1996, pp. 226–237. [Online]. Available:
http://dl.acm.org/citation.cfm?id=243846.243889

[27] K. M. Lepak and M. H. Lipasti, “On the Value Locality of Store Instruc-
tions,” in Proceedings of 27th International Symposium on Computer
Architecture (IEEE Cat. No.RS00201), Jun 2000, pp. 182–191.

[28] ——, “Silent Stores for Free,” in Proceedings of the 33rd Annual
ACM/IEEE International Symposium on Microarchitecture, ser. MICRO
33. New York, NY, USA: ACM, 2000, pp. 22–31.

[29] J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 127–139.

[30] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppel-
ganger: A Cache for Approximate Computing,” in Proceedings of the
48th International Symposium on Microarchitecture, ser. MICRO-48.
New York, NY, USA: ACM, 2015, pp. 50–61.

[31] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh,
O. Mutlu, and T. C. Mowry, “RFVP: Rollback-free Value Prediction
with Safe-to-approximate Loads,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 12, no. 4, p. 62, 2016.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan
notices, vol. 40, no. 6, pp. 190–200, 2005.

[33] M. Kambadur, S. Hong, J. Cabral, H. Patil, C.-K. Luk, S. Sajid, and
M. A. Kim, “Fast computational gpu design with gt-pin,” in 2015 IEEE
International Symposium on Workload Characterization. IEEE, 2015,
pp. 76–86.

[34] B. Welton and B. Miller, “Exposing hidden performance opportunities
in high performance gpu applications,” in 2018 18th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID).
IEEE, 2018, pp. 301–310.

[35] D. Mey, S. Biersdorf, C. Bischof, K. Diethelm, D. Eschweiler,
M. Gerndt, A. Knapfer, D. Lorenz, A. Malony, W. Nagel, Y. Oleynik,
C. Rassel, P. Saviankou, D. Schmidl, S. Shende, M. Wagner, B. Wesarg,
and F. Wolf, “Score-P: A unified performance measurement system for
petascale applications,” in Competence in High Performance Computing
2010, C. Bischof, H.-G. Hegering, W. E. Nagel, and G. Wittum, Eds.
Springer Berlin Heidelberg, 2012, pp. 85–97.

[36] H. Zhang, “Data-centric performance measurement and mapping for
highly parallel programming models,” Ph.D. dissertation, University of
Maryland—College Park, 2018.

[37] H. Zhang and J. Hollingsworth, “Understanding the performance of
GPGPU applications from a data-centric view,” in 2019 IEEE/ACM
International Workshop on Programming and Performance Visualization
Tools (ProTools), Nov 2019, pp. 1–8.

[38] M. Knobloch and B. Mohr, “Tools for gpu computing–debugging and
performance analysis of heterogenous hpc applications,” Supercomput-
ing Frontiers and Innovations, vol. 7, no. 1, pp. 91–111, 2020.

[39] NVIDIA Corporation, “NVIDIA PC sampling view,”
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#pc-
sampling.

[40] ——. (2020) NVIDIA CUPTI. [Accessed May 26, 2020]. [Online].
Available: https://docs.nvidia.com/cupti/Cupti/index.html

[41] L. Braun and H. Fröning, “Cuda flux: A lightweight instruction profiler
for cuda applications,” in Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS) Workshop,
collocated with International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC2019), 2019.

[42] B. Welton and B. P. Miller, “Diogenes: Looking for an honest
cpu/gpu performance measurement tool,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3295500.3356213

[43] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “Nvbit: A
dynamic binary instrumentation framework for nvidia gpus,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2019, pp. 372–383.

[44] M. Stephenson, S. K. Sastry Hari, Y. Lee, E. Ebrahimi, D. R. Johnson,
D. Nellans, M. O’Connor, and S. W. Keckler, “Flexible software pro-
filing of gpu architectures,” in ACM SIGARCH Computer Architecture
News, vol. 43, no. 3. ACM, 2015, pp. 185–197.

[45] D. Mosberger-Tang, “libunwind,” http://www.nongnu.org/libunwind.
[46] N. R. Tallent, J. Mellor-Crummey, and M. W. Fagan, “Binary analysis

for measurement and attribution of program performance,” in Proc. of
the 2009 ACM PLDI. NY, NY, USA: ACM, 2009, pp. 441–452.

[47] M. Arnold and P. F. Sweeney, “Approximating the calling context tree
via sampling,” IBM, Tech. Rep. 21789, 1999.

[48] (2020) Gotcha. [Accessed March 26, 2020]. [Online]. Available:
https://github.com/LLNL/GOTCHA

[49] H. Kaplan, “Persistent data structures,” in Handbook of Data Structures
and Applications. Chapman and Hall/CRC, 2018, pp. 511–527.

[50] J. Caballero and Z. Lin, “Type inference on executables,” ACM
Comput. Surv., vol. 48, no. 4, May 2016. [Online]. Available:
https://doi.org/10.1145/2896499

[51] U. of Wisconsin-Madison. Dyninst. [Accessed January 26, 2020].
[Online]. Available: https://github.com/dyninst/dyninst

[52] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey, “Scalable
identification of load imbalance in parallel executions using call path
profiles,” in SC 2010 International Conference for High-Performance
Computing, Networking, Storage and Analysis. New York, NY, USA:
ACM, November 2010.

[53] V. A. Dobrev, T. V. Kolev, and R. N. Rieben, “High-order curvilinear
finite element methods for lagrangian hydrodynamics,” SIAM Journal
on Scientific Computing, vol. 34, no. 5, pp. B606–B641, 2012.

[54] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[55] (2020) Quicksilver. [Accessed March 26, 2020]. [Online]. Available:
https://github.com/LLNL/Quicksilver

[56] (2020) YOLO: Real-Time Object Detection. [Accessed March 26,
2020]. [Online]. Available: https://pjreddie.com/darknet/yolo/

[57] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202–3216, 2014.

[58] Y. Jia, “Learning semantic image representations at a large scale,” Ph.D.
dissertation, UC Berkeley, 2014.

[59] C. Rivera, J. Chen, N. Xiong, S. L. Song, and D. Tao, “Ism2: Optimizing
irregular-shaped matrix-matrix multiplication on gpus,” arXiv preprint
arXiv:2002.03258, 2020.

[60] (2020) GVProf. [Accessed August 28, 2020]. [Online]. Available:
https://github.com/Jokeren/GVProf

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We profiled and optimized part of Rodinia benchmark v3.1, part of
CUDA 10.1 SDK Samples, Quicksilver (Github commit@af27b3d),
AlexeyAB/darknet (Github commit@342a8d1), Laghos (Github
commit@368a914), and LAMMPS (Github commit@aa2b885) on
ORNL’s Summit supercomputer with GVProf. We ran all applica-
tions with one GPU and one process, except for LAMMPS which
used up to 64 GPUs and 64 processes.

Each Summit node has 2 POWER9 CPU processors and 6 NVIDIA
Volta GPUs with 96GB GPUmemory in total and with the following
system software: Linux 4.14.0, NVIDIA CUDA Toolkit 10.1.243,
NVIDIA Driver 418.116, and GCC 6.4.0.

The performance of each application was averaged among 10
runs.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: Github:

https://github.com/Jokeren/GVProf↩→

Artifact name: GVProf

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Summit, Nvidia Tesla v100, IBM
POWER9 CPUs

Operating systems and versions: Redhat 7.6 running Linux kernel
4.14.0

Compilers and versions: GCC 6.4.0, NVCC 10.1.243

Applications and versions: Rodinia benchmark v3.1, CUDA
10.1 SDK Samples, Quicksilver (Github commit@af27b3d), Alex-
eyAB/darknet (Github commit@342a8d1), Laghos (Github com-
mit@368a914), and LAMMPS (Github commit@aa2b885)

Libraries and versions: CUDA Toolkit 10.1.243, IBM Spectrum
MPI 10.3.1.02rtm0

Key algorithms: bidirectional slicing

Input datasets and versions: Quicksilver: built-
in input. AlexeyAB/darknet: ./data/dog.jpg, and
‘https://pjreddie.com/media/files/yolov3-tiny.weights‘. Laghos:
./data/square01_quad.mesh. LAMMPS: bench/in.lj.

ARTIFACT EVALUATION
Verification and validation studies: The optimizations we per-

formed to avoid value redundancies (e.g., loop invariant code mo-
tion) are well known to be semantics preserving.

Rodinia v3.1:
backprop: ./backprop 65536 ./backprop 131072
bfs: ./bfs ../data/graph1MW_6.txt
hotspot: ./hotspot 512 2 2 ../data/temp_512 ../data/power_512

output.out
sradv1: ./srad 1 0.5 502 458 ./srad 1 0.5 1004 916
dct8x8: ./dct8x8
dwt2d: ./dwt2d 192.bmp -d 192x192 -f -5 -l 3
dxtc: ./dxtc ../data
reduction: ./reduction –type=double –n=1024
pathfinder: ./pathfinder 100000 100 20 ./pathfinder 100000 200 20
histogram: ./histogram
euler3d: ./euler3d ../data/fvcorr.domn.097K
Quicksilver@af27b3d: We profiled and optimized Quicksilver us-

ing its built-in input and ‘Examples/CORAL2_Benchmark/CORAL-
p1.inp‘ with one GPU and one process. Quicksilver was compiled
with -O3 optimization.

AlexeyAB/darknet@34a8d1: We profiled and optimized
Darknet using ‘./data/dog.jpg‘ as input with one GPU and
one process. Pretrained weights were downloaded from
‘https://pjreddie.com/media/files/yolov3-tiny.weights‘. Darknet
was compiled with -O3 optimization and cuBLAS enabled.

Laghos@368a914: We profiled and optimized Laghos using
‘./data/square01_quad.mesh‘ and ‘./data/cube01hex.mesh‘ as input
with one GPU and process. Laghos was compiled with -O3 opti-
mization.

LAMMPS@aa2b885: We ran LAMMPS using ‘bench/in.lj‘ and
‘examples/COUPLE/simple/in.l‘. We tested GVProf’s overhead us-
ing different numbers of GPUs from 1 to 64 across 11 nodes, with
one GPU per MPI process. We optimized LAMMPS’ performance
with one GPU. LAMMPS was compiled with -O3 optimization.

Accuracy and precision of timings: We profiled and optimized
benchmarks and applications on Summit. And the performance
was calculated by averaging the execution time among 10 runs.

Kernel time: For programs that have internal timing utilities, we
used them to measure kernel time. Otherwise, we used nvprof to
measure kernel time.

Whole program time: We used the time command of Linux to
get the whole programs’ running time.

Used manufactured solutions or spectral properties: N/A

Zhou, et al.

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: We ran the experi-
ments several times in multiple batch jobs. The results show that
our program optimizations yield stable performance improvements.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. We
ran the experiments several times in multiple batch jobs. The results
show that our program optimizations yield stable performance
improvements.

Eliminating redundant data movement and computation is bene-
ficial and not dependent on any particular GPU architecture. We
have tested GVProf on NVIDIA Volta V100 and RTX 1650 GPUs.

