
Measurement and Analysis of GPU-Accelerated
OpenCL Computations on Intel GPUs

Aaron Thomas Cherian, Keren Zhou, Dejan Grubisic, Xiaozhu Meng, John Mellor-Crummey
Dept. of Computer Science

Rice University
{atc8,kz21,dx4,xm13,johnmc}@rice.edu

Abstract—Graphics Processing Units (GPUs) have become a
key technology for accelerating node performance in supercom-
puters, including the US Department of Energy’s forthcoming
exascale systems. Since the execution model for GPUs differs from
that for conventional processors, applications need to be rewritten
to exploit GPU parallelism. Performance tools are needed for
such GPU-accelerated systems to help developers assess how well
applications offload computation onto GPUs.

In this paper, we describe extensions to Rice University’s HPC-
Toolkit performance tools that support measurement and analysis
of Intel’s DPC++ programming model for GPU-accelerated
systems atop an implementation of the industry-standard OpenCL
framework for heterogeneous parallelism on Intel GPUs. HPC-
Toolkit supports three techniques for performance analysis of pro-
grams atop OpenCL on Intel GPUs. First, HPCToolkit supports
profiling and tracing of OpenCL kernels. Second, HPCToolkit sup-
ports CPU-GPU blame shifting for OpenCL kernel executions—a
profiling technique that can identify code that executes on one or
more CPUs while GPUs are idle. Third, HPCToolkit supports fine-
grained measurement, analysis, and attribution of performance
metrics to OpenCL GPU kernels, including instruction counts,
execution latency, and SIMD waste. The paper describes these
capabilities and then illustrates their application in case studies
with two applications that offload computations onto Intel GPUs.

Index Terms—Supercomputers, High performance computing,
Performance analysis, Parallel programming

I. INTRODUCTION

Supercomputers composed of compute nodes accelerated
with Graphics Processing Units (GPUs) are becoming in-
creasingly common. GPUs are a popular kind of accelerator
because they provide enormous computation rates with much
better power efficiency than traditional CPUs. For that reason,
all of the forthcoming exascale computing platforms being
developed by the US Department of Energy employ GPU-
accelerated compute nodes.

The Aurora exascale supercomputer, being developed by
Intel for Argonne National Laboratory, will be composed
of compute nodes equipped with two Intel Xeon “Sapphire
Rapids” CPUs and six Intel Xe “Ponte Vecchio” GPUs [1].
While NVIDIA’s ecosystem for CUDA is well-established,
developing a capable software ecosystem for Intel’s emerging
GPU-accelerated compute nodes is a work in progress. At
present, many parts of the Aurora hardware and software are
undergoing rapid development, including Intel’s forthcoming
Ponte Vecchio GPUs, Intel’s compilers for generating GPU
code, Intel’s OpenCL and Level Zero runtime systems for

heterogeneous parallel computing, as well as tools for per-
formance measurement, analysis, and modeling.

As part of the Exascale Computing Project, Rice University
is extending its HPCToolkit performance tools [2], [3] for
measurement and analysis of GPU-accelerated applications on
compute nodes accelerated with Intel GPUs. HPCToolkit is
a suite of tools for measurement and analysis of the perfor-
mance of highly-optimized programs on systems ranging from
desktops to supercomputers. HPCToolkit supports profiling
within and across nodes of a parallel system. Its principal
mode of performance measurement on CPUs is asynchronous
sampling, which leads to low measurement overhead with
appropriately chosen sampling frequencies. HPCToolkit can
measure a wide range of performance metrics including time
as well as hardware counter metrics, which include measures
of work (e.g. graduated instructions) and inefficiency (e.g.
cache misses, branch mis-predictions, or stalls). In a post-
mortem analysis phase, HPCToolkit correlates metrics with
static and dynamic contexts in application source code.

In prior work, we describe extensions to HPCToolkit for
measurement and analysis of GPU-accelerated programs on
compute nodes accelerated with NVIDIA GPUs [3]. Here, we
describe new features added to HPCToolkit to profile code
offloaded to Intel GPUs using the OpenCL framework for
heterogeneous parallel computing. New capabilities developed
to support monitoring of computations offloaded to Intel GPUs
using OpenCL include:
• support for collecting call path profiles and call path

traces of OpenCL operations including kernel computa-
tions, data copies, and synchronizations,

• support for CPU-GPU blame shifting to quantitatively
assess opportunity costs associated with code regions
where no OpenCL kernel is active on GPUs, and

• support for collecting, analyzing, and attributing fine-
grain measurements within kernels on Intel GPUs.

HPCToolkit attributes measurements of OpenCL operations to
the full call path in the thread that initiated them. HPCToolkit
attributes fine-grain measurements of computations performed
by an OpenCL kernel to source lines and loops within the
kernel.

Section II introduces background material for the paper.
Section III outlines additions to HPCToolkit for profiling and
tracing of OpenCL operations. Section IV describes mea-
surement strategies for identifying opportunities to improve

26

2021 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools)

978-1-6654-1110-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ProTools54808.2021.00009

20
21

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l W

or
ks

ho
p

on
 P

ro
gr

am
m

in
g

an
d

Pe
rf

or
m

an
ce

 V
is

ua
liz

at
io

n
To

ol
s (

Pr
oT

oo
ls

) |
 9

78
-1

-6
65

4-
11

10
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

Pr
oT

oo
ls

54
80

8.
20

21
.0

00
09

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

application performance. Section V describes HPCToolkit’s
implementation of several capabilities for fine-grain measure-
ment and analysis of kernels executing on Intel GPUs. Section
VI describes case studies that illustrate the utility of the
capabilities described in this paper. Section VII provides an
overview of related work on GPU performance measurement.
Section VIII summarizes our conclusions and outlines our
plans to extend this work in the future.

II. BACKGROUND

A. Intel GPU hardware

HPCToolkit’s support for Intel GPUs was developed using
an Intel GEN9 GPU as a proxy for Intel’s forthcoming Ponte
Vecchio GPU. The principal computational element of a GEN9
GPU is known as an Execution Unit (EU). Each EU has a
pair of Single Instruction Multiple Data (SIMD) Arithmetic
Logic Units (ALU), seven register sets—one for each hardware
thread, thread control logic, a branch unit, and a send unit that
manages data movement in and out of the EU. A SubSlice
consists of a group of eight EUs along with a shared local
memory and a memory interface known as a data port. A
Slice consists of three SubSlices along with an L3 cache.

Intel’s forthcoming Ponte Vecchio GPU [4], which will
serve as the foundation of compute nodes in Aurora, has a
similar hierarchical organization. The principal computational
element is a Xe Core, which has eight vector engines for
executing SIMD instructions, eight matrix engines (similar to
NVIDIA’s tensor cores), register sets for thread contexts, as
well as instruction and L1 data cache/shared local memory.
16 Xe cores are organized into Slices. A Stack consists of
up to four Slices, an L2 cache, memory controllers, and
communication links. A 2-Stack consists of a pair of Stacks
and finally a full GPU may have as many as eight 2-Stacks.

At the heart of Intel’s GPU designs are functional units
for executing SIMD instructions that operate on multiple data
elements at a time. AMD’s GPUs also employ SIMD units
while NVIDIA’s GPUs do not. On GPUs that support SIMD
execution, analyzing the utilization of SIMD lanes is important
for assessing the degree to which a program is fully exploiting
the massive vector parallelism of the GPU.

B. SIMD inefficiencies

a) SIMD divergence: SIMD divergence occurs in if-else
blocks of GPU kernels. GPUs use SIMD instructions that
require execution of the same operation on all SIMD lanes
of a hardware thread. Some lanes may need to execute the if
block while others may need to execute the else block. But
because the same instruction must execute in all lanes, the
runtime will execute each if block and each else block but
with complementary lane masks for each. If a lane’s mask is
false, it will not perform the operation.

b) SIMD waste: Each SIMD instruction has multiple
lanes—one for each data element. SIMD waste occurs when
all lanes do not contribute to a computation. Primary factors

that cause SIMD waste are SIMD divergence, address arith-
metic, uniform variables (constant values for all SIMD lanes),
reduction operations, and message payloads.

Code transformations can help reduce/eliminate SIMD
waste. The Intel optimization guide [5] describes several meth-
ods to avoid conditional checks, such as padding buffers and
replacing conditional checks by relational functions. Address
arithmetic associated with arrays can be reduced by manually
hoisting accesses out of loops or performing transformations
such as scalar replacement [6] if the compiler doesn’t.

C. CPU-GPU Blame Shifting

CPU-GPU blame shifting [7] is a measurement and analysis
strategy that aims to identify code regions in GPU-accelerated
applications that cause idleness. This strategy can help identify
CPU code on the critical path of an application execution
where GPUs are idle, which represent potential opportunities
for improving performance by offloading.

D. OpenCL Execution Model [8]

A host runs an OpenCL application that offloads work to
other compute devices. In OpenCL jargon, a context refers to
the environment that includes the devices, memory objects,
the link between the host and the device (queue), etc. On an
OpenCL device, a work item is the fundamental unit of work
and a kernel is the function applied to a work item. Work-items
are grouped into work-groups.

E. Data parallel C++

Data parallel C++, known as DPC++ or DPCPP, is a
high level language developed by Intel as an extension of the
industry-standard SYCL programming model [9] for hetero-
geneous platforms. DPC++ can be compiled to either Intel’s
OpenCL or Level Zero runtime system.

F. Latency hiding

GPUs use multi-threading to hide stalls within a thread’s
instruction stream. GPU instruction stalls come from a variety
of causes, including execution pipeline latency, load latency,
and branch delays. A thread is marked ready-to-run if all
registers used by its next instruction are ready. Whenever a
thread experiences a stall, the EU switches to the next ready-
to-run thread. The more ready-to-run threads an EU has, the
better the EU can hide the latency of stalled threads. The
formula for calculating the number of hardware threads needed
in the EU to hide latency is as follows: Let covered latency
(C) be the number of cycles that the functional units take
for instruction execution. Let uncovered latency (U) be the
number of cycles lost in stalls. The minimum hardware threads
t needed by an EU to cover latency is t = 1 + (U/C) [10].

However, the number of threads in an EU is limited by
the number of register sets. If many threads are needed to
hide latency, it could be a sign that your thread’s workload or
access patterns need to be adjusted.

27

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. HPCToolkit’s tracing infrastructure coordinating application threads, monitor thread, and tracing threads.

Fig. 2. Trace view for application Amr-Wind shows the active and idle times for CPU threads and GPU streams [7]

III. PROFILING AND TRACING OpenCL OPERATIONS

HPCToolkit collects GPU profiles and traces data in three
steps. In the first step, it intercepts GPU invocation launches
and unwinds CPU call stacks to identify calling contexts. Then
it collects and processes GPU performance metrics associated
with invocations (step 2) and attributes them back to CPU
calling contexts (step 3). These three steps are achieved with
the interaction between application threads, monitor thread,
and tracing threads shown in Figure 1. Threads exchange
data through bidirectional single-producer single-consumer
and wait-free channels described in [3]. Each application
thread is responsible for unwinding its CPU call stacks and
attributing GPU metrics to its own calling contexts (steps 1 and
3). The monitor thread is responsible for collecting GPU ac-
tivities from the profiling APIs, processing the measurements
and sending data to the application, and tracing threads for
recording.

For OpenCL applications, depending upon the GPU opera-
tion invoked, either an application thread or a runtime thread
will receive a completion callback providing measurement
data. At each GPU API invocation I by an application thread
T , hpcrun provides a user_data parameter, which includes

a placeholder node P for the invocation I and T ’s activity
channel CA. The OpenCL runtime will pass user_data to
the completion callback associated with I.

At each completion callback, some threads receive measure-
ment data about a GPU activity A. Using information from
its user_data argument, the completion callback correlates
A with placeholder P and then en-queues an operation of
(A,P, CA) for the monitor thread in its operation channel CO.
The monitor thread en-queues an (A,P) pair in T ’s activity
channel CA. This way each application thread will correlate
the measurement data from an GPU operation it launched to
the invocation calling context previously collected.

IV. ANALYZING APPLICATION PERFORMANCE

A. CPU-GPU Blame-Shifting for OpenCL

CPU-GPU blame shifting aims at identifying work along
the critical path of an OpenCL application’s execution. Of
particular interest is CPU code along the critical path where
the GPU is idle. HPCToolkit’s CPU-GPU blame-shifting im-
plementation for DPC++ is based on prior work by Chabbi
et al. [7]. That work wrapped CUDA entry points to monitor
GPU operations. Ours is a more generic approach that relies on

28

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I
Amr-Wind CPU FUNCTIONS CONTRIBUTING MOST TO GPU IDLENESS

CPU function GPU idleness (%)

incflo::InitialProjection 60.07
incflo::InitialIterations 24.46
incflo::init amr wind modules 12.17

intercepting OpenCL operations. Supporting blame shifting for
OpenCL implementation layer for DPC++ naturally extends
the support to DPC++. With some additional generalization,
this implementation could be used to build support for other
GPU programming models, including HIP and CUDA.

HPCToolkit calculates three basic blame-shifting
metrics: CPU IDLE (sec), CPU IDLE CAUSE (sec),
GPU IDLE CAUSE (sec). CPU IDLE time and
CPU IDLE CAUSE time is calculated in callbacks
to OpenCL synchronization blocks. At the end of a
synchronization block, HPCToolkit performs two operations:
records CPU idle time and attributes it to the CCT of the
synchronization call, and gets the list of completed kernels
and attributes a portion of the CPU idle blame to each kernel
in this list. GPU IDLE CAUSE is calculated using a Linux
timer callback on each application thread: the callback will
increment the GPU idle time for a CPU region by the timer
interval if there are zero running kernels at the time the
callback was triggered.

With the help of these blame-shifting metrics users can
identify the GPU execution regions that cause CPU to sit
idle (CPU IDLE and CPU IDLE CAUSE) and, conversely,
identify the CPU regions that cause the GPU to lay dormant
(GPU IDLE CAUSE). With the former, the user can work
on reducing the critical path of the application. With the
latter, the application developer can offload some of the CPU
computations to the GPUs so as to keep all compute resources
busy at most times and thus utilize the compute bandwidth at
disposition more fruitfully. Thus blame shifting helps reduce
the overall execution time better than hotspot analysis. E.g.
figure 2 shows a trace view for an application called Amr-
Wind. This figure shows that GPU is idle for ∼ 97.67% when
the CPU thread executes clBuildProgram (this is the OpenCL
routine that compiles and links OpenCL program executable
from the program source or binary). We get the same results
in profile view with the help of GPU IDLE CAUSE metric.
Table. I shows the CPU functions with highest value for
GPU IDLE CAUSE metric for the Amr-Wind application. All
three functions in the table internally call clBuildProgram.

B. Identifying potential inefficiencies

GPU vendors release documents containing programming
best practices for their GPU hardware. Users find it hard to find
and apply the right optimizations in an application by referring
to such documentation. Here, we describe how support in
HPCToolkit detects that good practices described by the Intel
GPU optimization guide [5] are not being followed.

Fig. 3. Kernels in PeleC that can benefit from enabling code reordering

a) JIT compilation on single devices: A DPC++ ap-
plication binary will internally store the kernels in an inter-
mediate format called SPIR-V. When it is time to offload
the kernel to a target hardware device, the SPIR-V code is
converted to assembly format according to the instruction set
of the target hardware. This conversion is called Just-in-time
(JIT) compilation. Note that JIT compilation takes up some
overhead for each kernel when its being compiled for a new
device. If the user has a single hardware device, then the cost
of JIT compilation can be avoided by using ahead-of-time
(AOT) compilation. HPCToolkit gets the device utilization
count by intercepting clCreateContext and suggests when it is
right to turn on AOT compilation with the help of the metric
SINGLE DEVICE USE AOT COMPILATION.

b) Redundant memory transfers: Output computations
of kernels are transferred to the host. These transfers are
called device to host (D2H) transfers. It is possible that
the output buffers are sent back to the accelerator device
(after some pre-processing). These transfers are called host
to device (H2D) transfers. One can avoid these D2H and H2D
transfers altogether if the data massaging can be done on the
device side. Memory transfers are expensive operations. The
memory bandwidth is a bottleneck for GPU computations and
avoiding redundant transfers will definitely improve the overall
execution efficiency.

HPCToolkit intercepts all H2D and D2H calls to check if
a buffer passed from GPU (via D2H) is sent as input again
to GPU (via H2D) and brings such redundant transfers to
the notice of the user with the help of the metric OUT-
PUT OF KERNEL INPUT TO ANOTHER KERNEL.

c) Code reordering disabled: Kernels usually take
buffers as input arguments. Intel’s DPCPP compiler assumes
that aliasing is always present amongst the arguments and
doesn’t perform code reordering for instructions containing the
kernel arguments. The user can let the compiler know explic-
itly when there is no pointer aliasing via pragmas, which will
help get the benefits of instruction reordering optimization.

29

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

HPCToolkit tracks all buffer arguments used for an OpenCL
kernel and uses an algorithm for detecting overlap of the mem-
ory regions belonging to the buffers during the kernel dispatch.
HPCToolkit uses the KERNEL PARAMS NOT ALIASED
metric for kernels that don’t have pointer aliasing to iden-
tify kernels where code-reordering of accesses using kernel
argument pointers is legal.

Figure 3 shows HPCToolkit identifying kernels
being called from amrex::Amr::FinalizeInit() that
have non-overlapping pointer arguments (with the
KERNEL PARAMS NOT ALIASED metric). Enabling
code reordering for kernels with non-overlapping arguments
may significantly improve performance. A user can add
intel::kernel args restrict pragma inside the kernel definition
to notify the compiler that code reordering of accesses using
argument pointers is allowed.

d) Redundant kernel JIT costs: In DPC++, each kernel
is passed to devices for execution. The runtime abstraction of
devices are queues. Each queue uses a context that can store
JIT’ed kernels and input buffers. Multiple queues can use the
same context internally. The advantage of executing kernels
inside the same context is that the JIT’ing cost is paid only
once for each kernel. If the same kernel is executed across
multiple contexts, the JIT cost paid for each context.

At each kernel dispatch call, the kernel is passed to
a queue. HPCToolkit maintains an internal data-structure
that contains a list of all queue contexts onto which a
kernel has been dispatched. At each kernel dispatch, two
tasks are done: this list is updated if a new context is
used, and a check is done to see if the kernel has been
passed to multiple contexts. OpenCL kernels that are passed
to multiple contexts are identified with the metric KER-
NEL TO MULTIPLE QUEUES MULTIPLE CONTEXTS.
The user can merge all the executions for that kernel to a
single context to avoid the duplicate JIT cost.

e) Serialized kernel executions: Each hardware device
that executes a kernel is represented as a queue object by
DPC++ runtime. Each queue object has properties that
represent execution and device properties. These properties
are set when the queue object is created. One such property
called execution mode determines if the kernels will be
executed in-order or out-of-order. In-order mode ensures that
kernels are executed in the order that they are submitted. Out-
of-order mode enables the runtime to execute multiple kernels
on the device in parallel. HPCToolkit will check for queues
that have in-order execution mode turned on by checking
the queue properties passed to the function clCreateCom-
mandQueue/clCreateCommandQueueWithProperties (these
are OpenCL functions that create the queue objects). Such
queues are identified with the metric INORDER QUEUE. If
its not necessary for kernels in a queue to execute in order,
then the user can toggle the execution mode of the queues.

f) Unused accelerator devices: A node may have mul-
tiple accelerator devices. For workloads that have a good
compute to memory ratio, it makes sense to leverage all
available accelerator devices. This helps parallelize computa-

tions and distribute overall workload. The host CPU device
can also be used to run some of the kernel computations.
The workload splits between accelerators should be according
to the capability of the devices (not always an equal split).
HPCToolkit searches for all available devices inside DPC++
runtime (using OpenCL functions clGetPlatformIDs and clGet-
DeviceIDs) and how many are being used (by monitoring
device utilization count in clCreateContext). If all devices are
not getting used, HPCToolkit brings this to notice of the user
using the metric ALL DEVICES NOT USED.

V. ANALYZING KERNEL PERFORMANCE

Kernels are building blocks of a GPU application and
thus it is important to analyze their execution efficiency. At
present, instrumentation is the only available mechanism to
observe performance inside kernels on Intel GPUs. This will
change. Intel is developing hardware support for instruction-
level performance measurement that will become available in
a future generation of its GPUs.1.

Instrumentation generally has a large overhead compared to
other techniques such as sampling. The brute force method for
instrumentation would be to insert a probe for each instruction.
This is not advisable since overhead incurred by instrumenta-
tion is proportional to the number of instrumentation probes
inserted and executed in the binary. Also, there are limits
on register usage for storing instrumentation results. Storing
instrumentation results in memory will increase measurement
overhead.

HPCToolkit uses Intel’s GT-Pin library [11] to instru-
ment the GPU kernels and gather performance information.
GT-Pin has three callbacks: before compiling each kernel
(GTPin OnKernelBuild), before running each kernel (GT-
Pin OnKernelRun) and after each kernel execution (GT-
Pin OnKernelComplete). The GT-Pin instrumentation probes
are inserted inside GTPin OnKernelBuild callback time. GT-
Pin OnKernelRun ensures profiling is enabled and HPC-
Toolkit’s calling context data-structure is initialized for the
kernel. Instrumentation results are collected and stored to the
calling context in GTPin OnKernelComplete.

HPCToolkit supports three types of kernel performance
analysis: instruction execution counts, SIMD analysis, and
latency analysis. We explain the strategies used to minimize
instrumentation overhead for each of these measurements in
their respective subsections. Running all three analysis modes
simultaneously could alter instrumentation results. E.g. latency
probe records bloated values because of SIMD probes. SIMD
probes are not necessary inside latency analysis and there-
fore controlling probe insertion according to analysis needs
improves the result accuracy and reduces instrumentation
overhead.

A. Instruction execution counts

GTPin OpcodeprofInstrument is the GT-Pin probe that gets
the execution count for a GPU instruction. HPCToolkit inserts

1Intel has approved public release of this information.

30

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. SIMD analysis inside HPCToolkit

this probe once for each basic-block, since all instructions
within a basic-block will have the same execution count.
EXC CNT is the metric inside HPCToolkit that records the
GPU instruction execution counts and aggregates it to the
source code.

B. SIMD analysis

SIMD instructions operate on multiple data elements si-
multaneously. Intel’s GPUs use SIMD instructions. With the
help of SIMD analysis we want to understand how well each
kernel utilizes SIMD lanes and identify the code regions in
each kernel that incur significant SIMD waste.

1) Calculating SIMD waste: For measuring SIMD waste,
HPCToolkit need two things: SIMD utilization and total SIMD
lanes available. SIMD waste is the difference between total
lanes and utilized lanes.

For calculating SIMD utilization for a kernel, we leveraged
the code for SIMDProf [12]—an Intel GT-Pin tool. This tool
calculates the SIMD values internally using instrumentation
and instruction-specific variables such as instruction mask,
predication value, etc. GT-Pin instrumentation probes for get-
ting SIMD utilization values are GTPin SimdProfInstrument.
SIMDProf gives an approach to reduce the probes needed
for SIMD analysis. Calculating SIMD utilization is dependent
on certain static and dynamic instruction properties, such as
execution mask, predication, SIMD channels available for the
current instruction, etc. If we were to identify instruction
groups such that all instructions in a group have same static
and dynamic properties, we can add a single instrumentation
probe for the entire group. With this single probe HPCToolkit
can get the SIMD utilization for all instructions in the group.
This logical grouping of instructions help reduce the total
number of instrumentation probes for SIMD analysis.

The second step is to calculate the total lanes available.
We can calculate this by multiplying the instruction fre-
quency with total SIMD lanes available for each instruction.
Instruction frequency can be calculated with the help of
instrumentation; total SIMD lanes can be queried via GT-
Pin (GTPin KernelGetSIMD). With all the necessary inputs

in hand for our computation, HPCToolkit can calculate the
SIMD waste for the GPU kernels.

Figure 4 shows a run for SIMD analysis for PeleC
application inside HPCToolkit. HPCToolkit computes four
metrics as part of SIMD analysis: active SIMD lanes
(ACT SIMD), wasted SIMD lanes (WAST SIMD), total
SIMD lanes (TOT SIMD) and SIMD loss due to scalar
instructions (SIMD SCLR LOSS). Metrics WAST SIMD and
SIMD SCLR LOSS are important with respect to optimiza-
tion: with these the user can sort the results and find the regions
incurring most SIMD waste. Once those regions are brought
in view, the user can view the kernel source code and identify
the reason for SIMD waste. With this knowledge, the user
can apply the corresponding code transformation(s) to improve
SIMD utilization. The highlighted row is one of the highest
contributor to SIMD waste for pc compute hyp mol flux
kernel. The source pane shows that the corresponding line is
a return of an array value and as discussed before, array index
calculations involve address arithmetic.

C. Latency analysis

Hotspot analysis gives us the execution time of the kernel.
For expensive kernels, the user would like to know the fine-
level execution details: why does the kernel take so long to
execute, which are the most expensive lines in the kernel,
etc. In this section, we give these execution details about the
kernel. To be specific, HPCToolkit performs latency attribution
for the instructions within a kernel, provides the efficiency of
latency hiding inside the GPU and identifies the instructions
that are culprits for large latency within the kernel.

For latency analysis, HPCToolkit inserts probes on in-
struction groups to reduce the instrumentation probe count.
Instructions in a kernel are grouped into basic blocks. We can
add a single instrumentation probe for each basic block to get
both the execution frequency and latency for the basic block.
Once we get the latency incurred for the entire basic block,
we calculate instruction-level latency using statistical analysis
as described in [13].

31

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Latency analysis inside HPCToolkit

1) Latency attribution: GT-Pin instrumentation probes for
getting latency values are GTPin LatencyInstrumentPre and
GTPin LatencyInstrumentPost Mem. These probes are in-
serted for each basic-block and we then employ statistical
analysis to get instruction-level latency. Combining instruction
latency with line-map information retrieved from the GPU
binary helps us to portray the latency for the source lines
within the kernel. With this functionality integrated inside
HPCToolkit, the user can view the most expensive source lines
for the GPU kernels.

Figure 5 shows latency analysis done for Amr-Wind [14]
inside HPCToolkit. Kernel Node Laplacian is one of the
most expensive kernels inside Amr-Wind. There are 4 metrics
involved in latency analysis: latency cycles (LAT), covered
latency (COV LAT), uncovered latency (UNCOV LAT) and
threads needed to cover latency (THR COV LAT). Latency
cycles helps us view the latency accumulated at source line
level, with this the user gets finer execution perspective.

2) Latency hiding: Latency hiding is a technique used
inside CPUs and GPUs to hide idleness and keep the hardware
busy as much as possible. Latency hiding is done using multi-
threading inside Intel GPUs (refer section II for more detailed
explanation). The formula to calculate threads needed to hide
latency inside a GPU execution unit (EU) is: 1 + (U/C),
(U : uncovered latency, C : covered latency). We calculate
C and U with help of latency values calculated for kernel
instructions. Latency is sum of covered and uncovered latency.
We can approximate C as 1 cycle for each instruction. U is the
difference between latency and C. Once we have these values,
we can plug it into the above formula to get the number of
threads needed in the EU to fully hide latency. If this value is
<= 7 (the number of hardware threads present in Intel Gen9
GPUs [5]), then all of the uncovered latency will be hidden
with the help of multi-threading. If the number of threads
needed is higher than seven, the user needs to explore ways
to optimize his kernels and reduce uncovered latency. This

Fig. 6. Latency blaming with help of def-use relation between instructions

can be done with the help of latency attribution and latency
blaming.

Columns 2, 3 and 4 in Figure 5 represent covered latency,
uncovered latency and threads needed to hide latency.

3) Latency blaming: Users can use latency attribution (LAT
column from figure 5) to see the most expensive lines in
their kernel. But this metric doesn’t always paint the accurate
picture of kernel execution. An instruction (or source line) may
be taking a lot of execution cycles, but that could be because
it is waiting for the results from a preceding instruction (line).
In that case, the real culprit of latency is the predecessor.

For latency blaming, we need latency values for the kernel
(calculated in latency attribution), execution frequency (using
instrumentation) and the def-use relationship between kernel
instructions. We get the def-use graph for kernels with the help
of the Dyninst library [15] and IGA [16].

Figure 6 describes the formula we use for latency blaming.
This formula is a modification of the stall blame analysis done
in GPA [17]. The latency blame for the def instruction is
calculated with help of latency values of the use instructions,
execution frequency of both def and use, and the distance
between the def and use instruction. Note that the greater the
path length between source (def) and destination (use) vertices,
lesser the blame that gets accumulated to the source vertex.

With the latency blame view inside HPCToolkit, the user
can take action to optimize the source lines that are the actual
culprits of high latency in the kernel.

32

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

D. Attributing measurements to program source

HPCToolkit’s hpcstruct program is used to analyze Intel
GPU binaries. Hpcstruct uses Intel’s IGA library [16] to parse
the binaries and read the machine instructions. By identifying
branch instructions and branch targets, it reconstructs the CFG
of the binary. This CFG is then passed internally onto dyninst
which recovers the loop-nesting structure for the binary. Then
hpcstruct identifies the nesting of the machine instructions
inside the loops that are present in the code. It also looks at
the attribution of each machine instruction back to the program
source, for which it is dependent on the line-map information
made available by the compiler.

GPU kernels, just like CPU functions, could invoke other
kernels, lambdas, inline functions, etc. If GPU compilers do
not adequately capture these calls for optimized binaries,
profiling tools cannot attribute the measured metrics to the
correct source code locations. While evaluating the kernel
analysis results run on Intel GPUs with DPC++ compilers
(developed by Intel), we observed that the call chains in the
GPU context was not correctly captured by the compiler. This
could result in HPCToolkit displaying misleading profiling
results in some cases. At the time of writing this paper, the
Intel compiler team has been notified of this issue.

VI. CASE STUDIES

In the previous sections, we described capabilities HPC-
Toolkit’s support for measurement and analysis of GPU-
accelerated applications executing on Intel GPUs atop
OpenCL. In this section, we use two applications to demon-
strate HPCToolkit’s utility for measurement and analysis of
sophisticated applications.

A. PeleC

PeleC [18] [19] is a combustion application built by LBNL,
NREL, and ANL, tailored for supercomputers and exas-
cale machines. It uses Direct Numerical Simulations (DNS)
of turbulence-chemistry interactions in real-world conditions,
models system structure with Embedded Boundary (EB) capa-
bility and uses AMR (Adaptive Mesh Refinement) which is a
system for mesh refinement based on the AMReX framework.
We studied PeleC’s Taylor-Green Vortex (TG) problem written
in DPC++.

With HPCToolkit’s latency analysis, we observed that a for-
loop executed as part of kernel pc compute diffusion flux had
a lot of uncovered latency. This loop had three variables: i, j,
k. These variables were initialized in order k → j → i but
then were immediately consumed in the order i → j → k by
subsequent lines. This code was part of the AMReX library.
Upon closer inspection, we observed the same usage pattern
for multiple AMReX function routines. If the initialization
order was maintained during consumption, we could observe
more latency hiding (Intel compiler could be doing this
reordering in the binary, but it doesn’t hurt to manually do such
optimizations). SIMD analysis run on PeleC shows most of
the SIMD waste occurring at device function invocations, loop
conditionals, address arithmetic, etc. 25.5% of the SIMD waste

is due to scalar instructions. Unsurprisingly, the top two expen-
sive kernels inside the application, pc compute hyp mol flux
and pc compute diffusion mol flux, contribute to ∼ 67% of
the SIMD waste.

Blame-shifting analysis for PeleC shows the top can-
didate kernels for optimization (pc compute hyp mol flux,
pc compute diffusion mol flux, Diffusion, getMOLSrcTerm,
copy array and setV).

Of the two program inefficiencies identified for PeleC, first
was to enable ahead-of-time (AOT) compilation or offload
kernels to CPU (host) device. There were two compute devices
available in the remote server that ran the experiment: an Intel
GPU (Iris(R) Pro Graphics P580) and Intel CPU (Xeon(R)
CPU E3-1585 v5 @ 3.50GHz). The second suggestion given
for optimization was to enable code reordering in kernels
that don’t have pointer aliasing. Our analysis showed that
seven kernel executions could benefit from this optimization
(Figure 3). All seven kernels are called from loop regions.
Thus enabling this optimization can help improve the kernel
performance.

B. Amr-Wind

ExaWind [20] is an open-source collection of physics codes
and libraries for multi-fidelity wind turbine and wind power
plant simulation written to harness exascale computational
power. We studied the Amr-Wind [14] application inside the
ExaWind suite, which is a massively parallel, block-structured
adaptive-mesh, and in-compressible flow solver for wind tur-
bine and wind farm simulations. The solver is built on top of
the AMReX library. For our case study, we worked with the
DPC++ version of the application.

For latency analysis, we observed that a for-loop in ker-
nel amrexParallelForNodeLaplacianFsmooth lost many cy-
cles in uncovered latency. This loop had the same inverted
initialization-usage pattern that we observed for other AMRex
functions inside PeleC. Correcting this pattern across the
AMRex library could potentially lower execution time for
many applications importing this library in their code-base.
SIMD analysis shows that SIMD loss is occurring at different
regions: at address arithmetic instructions, conditional checks,
etc. Most of the lines showing SIMD waste consisted of
address arithmetic logic. 16% of the SIMD loss is contributed
by scalar instructions (instructions that are using a single
SIMD lane).

When blame-shifting was run on Amr-Wind, we observed
that it is poorly utilizing the GPU compute power. The GPU
was idle for ∼ 97.67%. Taking a deeper look, we see that ∼
510 seconds are spent in clBuildProgram, which is an OpenCL
function responsible for building the program binaries. When
the slowdown issue was raised with a developer from the
Amr-Wind team, they accepted this issue and suggested that
adding the build option -fsycl-device-code-split=per kernel re-
duces the JIT compilation time during execution. HPCToolkit
requires -g flag to be passed in the application to extract
debugging information from the binaries. However, adding -
fsycl-device-code-split=per kernel along with -g flag caused

33

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ANALYSIS OVERHEAD

Application Vanilla run SIMD analysis Latency analysis Blame shifting Program inefficiencies
sec sec(overhead) sec(overhead) sec(overhead) sec(overhead)

PeleC 8.617 14.497(1.68x) 13.695(1.59x) 10.418(1.21x) 10.376(1.2x)
Amr-Wind 519.215 1295.975(2.5x) 1243.127(2.39x) 911.591(1.75x) 880.857(1.7x)

the application build to fail. Another alternative suggested
to mitigate this slowdown is using AOT compilation. This
direction is yet to be explored.

Program inefficiencies identified for Amr-Wind are similar
to the ones for PeleC. First was to enable AOT compilation or
offload kernels to CPU (host) device. If the user offloads more
of the computational load to kernels, it would make sense to
use either AOT compilation or both compute devices to gain
speedup. The second suggestion given for optimization was
to enable code reordering in kernels that don’t have pointer
aliasing. Our analysis showed that ∼ 9000 kernel executions
could benefit from this optimization. Many of these kernels
are invoked from loops. Since a relatively small portion of
our execution of an Amr-Wind benchmark is spent executing
GPU kernels, the benefits of these optimizations will be visible
only when kernel execution takes up more of the computation
load.

C. Measurement Overhead

HPCToolkit uses binary instrumentation for SIMD and
latency analysis because Intel GPUs do not support hardware-
based instruction measurement at present. The instrumentation
overhead is reduced with the help of sparse probes and
statistical analysis.

Table II lists the execution results of our analysis suite with
two DPC++ applications: PeleC [18] and Amr-Wind [14].

The overhead of our analysis ranges from 1.2×–2.5×. The
highest overhead is observed for SIMD analysis, followed by
latency analysis. Our tool’s overhead is comparable to the
previous work’s 1.01×–2.5× overheads that also uses GT-
Pin for instrumentation [13]. The overhead incurred by our
analysis lies within this range which implies that our overhead
is acceptable. Intel VTune’s [21] latency and SIMD analysis
on Amr-Wind had 2.1× and 2.14× overhead respectively.
VTune’s run did kernel profiling, not application profiling. So
the overhead is not entirely comparable. NVIDIA’s CUPTI
instrumentation on the other hand has shown overheads up to
296x for GPU applications [22].

VII. RELATED WORK

VTune [21] is a commercial profiling tool provided by Intel.
It supports process and system-level profiling. Process-level
profiling includes fine-grained measurements using GTPin
such as SIMD usage, latency values, etc. It has a profile
and timeline view and provides source code correlation of the
collected profiles. Inside the source view, the GPU instruction
count, SIMD utilization, latency cycles can be viewed. Some

additional features in VTune are: analyzing cache performance,
FPGA profiling and assembly code correlation to metrics.
Some disadvantages of VTune are it does not merge CPU and
GPU calling-context view of metrics and, it gives profiling
support only for Intel GPUs.

Nsight Compute [23] is NVIDIA’s commercial profiling
tool for NVIDIA GPUs. Some of its features are roofline
model analysis, memory usage representation, profile view
with source code and assembly correlation, and PC sampling.
Unlike NVIDIA’s tools, HPCToolkit associates instruction-
level performance metrics with detailed contexts including
inlined code, loops, device function calls, and source lines.
In contrast, NVIDIA’s tools only relate instruction-level costs
to kernel source lines. Such a view is almost useless for highly
inlined code because it is not apparent how source lines from
deeply nested chains of inlined functions came to be present
in a kernel.

ROC profiler library [24] is AMD’s GPU profiling API. It
provides profiling support using hardware counters, derived
metrics and application tracing with which users can view
kernel execution, async memory transfers and barrier details.
Rocprof is a command-line tool that uses this API internally.

TAU [25] is a profiling tool for OpenCL and CUDA devel-
oped by University of Oregon, Los Alamos National Labora-
tory, and Research Centre Juelich. It consists of a profile view
and trace view as well as support for instrumentation analysis
for CPUs. It provides a flat-profile for GPUs at kernel level
and does not give a calling-context view.

VIII. CONCLUSIONS AND FUTURE WORK

This paper describes performance measurement and analy-
sis support in HPCToolkit for DPC++/OpenCL applications
running on Intel GPUs.

HPCToolkit leverages blame-shifting to identify the non-
overlapped CPU-GPU execution. Moreover, HPCToolkit
checks various inefficiencies in GPU kernels and provides
corresponding optimization suggestions. HPCToolkit also pro-
vides fine-grained kernel insights such as instruction execution
counts, SIMD analysis, and latency hiding analysis.

At run-time, HPCToolkit currently processes measurements
collected using GT-Pin instrumentation and attributes them
at both the basic block and instruction level. The overhead
incurred due to instruction-level attribution is substantial. For
Amr-Wind, it was over 6x the cost associated with basic block
level attribution. The runtime overhead of instruction-level
attribution can be avoided by deferring it to post-mortem anal-
ysis. During post-mortem analysis, the overhead of instruction-

34

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

level attribution would be less since it would be incurred once
for each kernel calling context rather than once for each kernel
invocation.

At the time of this writing, hardware support for instruction-
level measurement of GPU performance is only available
on NVIDIA GPUs. Intel is developing hardware support for
instruction-level performance measurement that will become
available in a future generation of its GPUs. The addition
of hardware support for instruction-level measurement should
provide complementary metrics to instrumentation-based met-
rics. Currently, HPCToolkit attributes instruction metrics with
incomplete inline information. Once Intel compilers start cap-
turing inline calls made inside GPU binaries, users would
be able to see a clearer picture of the kernel execution and
understand avenues to add optimizations to the kernels.

We will enhance HPCToolkit to provide more intuitive
guidance for inefficiencies. First, we plan to provide an
estimated performance gain associated with each inefficiency,
e.g., the time savings associated with avoiding redundant JIT
compilation. Also, the program inefficiencies are currently
visible as metrics in columnar format. We want to give these
suggestions to the user in a GUI-friendly and intuitive fashion
by borrowing ideas from existing applications. Last, we would
like to extend our tool with instruction-level analysis to assess
important code characteristics such as GPU register pressure.

Eventually, Intel plans to fully transition from OpenCL to
its emerging Level Zero runtime but at present supports both.
The interface for performance monitoring in Level Zero is
similar to that for OpenCL, so we expect to simply transition
to new interfaces for monitoring offloading using Level Zero
and leveraging the core monitoring and analysis functionality
described in this work for programs running atop Level Zero.

ACKNOWLEDGMENTS

This research was supported in part by the Exascale Com-
puting Project (17-SC-20-SC)—a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration, Argonne National Labora-
tory (Subcontract 9F-60073), and Advanced Micro Devices.

REFERENCES

[1] Argonne Leadership Computing Facility, “Aurora.” https://www.alcf.anl.
gov/aurora.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[3] K. Zhou, M. W. Krentel, and J. Mellor-Crummey, “Tools for top-down
performance analysis of gpu-accelerated applications,” in Proceedings of
the 34th ACM International Conference on Supercomputing, pp. 1–12,
2020.

[4] D. Blythe, “Intel’s Ponte Vecchio GPU architecture.” https://hc33.
hotchips.org/assets/program/conference/day2/hc2021 pvc final.pdf,
2021.

[5] Intel Corporation, “oneAPI GPU optimization guide.”
https://software.intel.com/content/www/us/en/develop/documentation/
oneapi-gpu-optimization-guide/top.html, 2020.

[6] D. Callahan, S. Carr, and K. Kennedy, “Improving register allocation for
subscripted variables,” SIGPLAN Not., vol. 39, p. 328–342, Apr. 2004.

[7] M. Chabbi, K. Murthy, M. Fagan, and J. Mellor-Crummey, “Effective
sampling-driven performance tools for GPU-accelerated supercomput-
ers,” in Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–12, 2013.

[8] Khronos Group, “Opencl execution model.” https://www.khronos.org/
assets/uploads/developers/library/2012-pan-pacific-road-show-June/
OpenCL-Details-Taiwan June-2012.pdf, 2012.

[9] Khronos SYCLWorking Group, “SYCL 2020 Specification (revi-
sion 3).” https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/
sycl-2020.pdf.

[10] Jim Valerio, “GPU Compute Engine: Theory of operation. distribution
restricted by NDA.”

[11] M. Kambadur, S. Hong, J. Cabral, H. Patil, C.-K. Luk, S. Sajid,
and M. A. Kim, “Fast computational GPU design with GT-Pin,” in
Proceedings of the 2015 IEEE International Symposium on Workload
Characterization, IISWC ’15, (USA), p. 76–86, IEEE Computer Society,
2015.

[12] Intel Corporation, “Simdprof sample tool.” https://software.intel.com/
sites/landingpage/gtpin/ s i m d p r o f t o o l.html, 2020.

[13] A. V. Gorshkov, M. Berezalsky, J. Fedorova, K. Levit-Gurevich, and
N. Itzhaki, “GPU instruction hotspots detection based on binary instru-
mentation approach,” IEEE Transactions on Computers, vol. 68, no. 8,
pp. 1213–1224, 2019.

[14] Lawrence Berkeley National Laboratory, National Renewable Energy
Laboratory, and Sandia National Laboratories, “AMR-Wind: a massively
parallel, block-structured adaptive-mesh, incompressible flow solver for
wind turbine and wind farm simulations.” https://github.com/Exawind/
amr-wind, 2018.

[15] Computer Sciences Department, University of Wisconsin–Madison,
“Dyninst DataflowAPI programmer’s guide.” https://dyninst.org/sites/
default/files/manuals/dyninst/dataflowAPI.pdf.

[16] Intel Corporation, “IGA: Intel Graphic Assembler.” https://github.com/
intel/intel-graphics-compiler/blob/master/visa/iga/IGALibrary/api/kv.h.

[17] K. Zhou, X. Meng, R. Sai, and J. Mellor-Crummey, “Gpa: A gpu
performance advisor based on instruction sampling,” in 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
pp. 115–125, IEEE, 2021.

[18] National Renewable Energy Lab. (NREL) and Lawrence Berkeley
National Lab, “Pelec: an adaptive-mesh compressible hydrodynamics
code for reacting flows.” https://github.com/AMReX-Combustion/PeleC,
2018.

[19] S. Whitman, J. Brasseur, and P. Hamlington, “Simulation of bluff-
body stabilized flames with PeleC, an Exascale combustion code.”
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/
19symposium-slides/whitman flames.pdf, 2018.

[20] Wind Energy Technologies Office, Office of Energy Efficiency &
Renewable Energy, “ExaWind supercharges wind power plant simu-
lations on land and at sea.” https://www.energy.gov/eere/wind/articles/
exawind-supercharges-wind-power-plant-simulations-land-and-sea,
2020.

[21] A. Marowka, “On performance analysis of a multithreaded application
parallelized by different programming models using Intel VTune,” in
International Conference on Parallel Computing Technologies, pp. 317–
331, Springer, 2011.

[22] K. Zhou, X. Meng, R. Sai, D. Grubisic, and J. M. Mellor-Crummey, “An
automated tool for analysis and tuning of gpu-accelerated code in hpc
applications,” IEEE Transactions on Parallel and Distributed Systems,
2021.

[23] NVIDIA Corporation, “NVIDIA Nsight Compute: an interactive
kernel profiler for CUDA applications.” https://developer.nvidia.com/
nsight-compute.

[24] Advanced Micro Devices, Inc, “AMD ROCm ROCProfiler.” https:
//rocmdocs.amd.com/en/latest/ROCm Tools/ROCm-Tools.html.

[25] S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
The International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

35

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on December 29,2021 at 15:29:22 UTC from IEEE Xplore. Restrictions apply.

