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Dyninst and MRNet: Foundational
Infrastructure for Parallel Tools

William R. Williams, Xiaozhu Meng, Benjamin Welton
and Barton P. Miller

Abstract Parallel tools require common pieces of infrastructure: the ability to
control, monitor, and instrument programs, and the ability to massively scale these
operations as the application program being studied scales. The Paradyn Project has a
long history of developing new technologies in these two areas and producing ready-
to-use tool kits that embody these technologies: Dyninst, which provides binary
program control, instrumentation, and modification, and MRNet, which provides a
scalable and extensible infrastructure to simplify the construction of massively par-
allel tools, middleware and applications. We will discuss new techniques that we
have developed in these areas, and present examples of current use of these tool kits
in a variety of tool and middleware projects. In addition, we will discuss features in
these tool kits that have not yet been fully exploited in parallel tool development,
and that could lead to advancements in parallel tools.

1.1 Introduction

Parallel tools require common pieces of infrastructure: the ability to control, monitor,
and instrument programs, and the ability to massively scale these operations as the
application program being studied scales. The Paradyn Project has a long history
of developing new technologies in these two areas and producing ready-to-use tool
kits that embody these technologies. One of these tool kits is Dyninst, which pro-
vides binary program control, instrumentation, and modification. When we initially
designed Dyninst, our goal was to provide a platform-independent binary instru-
mentation platform that captured only the necessary complexities of binary code.
We believe that the breadth of tools using Dyninst, and the breadth of Dyninst com-
ponents that they use, reflects how well we have adhered to these guiding principles.
We discuss the structure and features of Dyninst in Sect. 1.2.

Another tool kit we have developed is MRNet, which provides a scalable and
extensible infrastructure to simplify the construction of massively parallel tools,
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middleware and applications. MRNet was designed from the beginning to be a flexi-
ble and scalable piece of infrastructure for a wide variety of tools. It has been applied
to data aggregation, command and control, and even to the implementation of dis-
tributed filesystems. MRNet provides the scalability foundation for several critical
pieces of debugging software. We discuss the features of MRNet in Sect. 1.3.

We discuss common problems in scalable tool development that our tool kits
have been used to solve in the domains of performance analysis (Sect. 1.4) and
debugging (Sect. 1.5). These problems include providing control flow context for an
address in the binary, providing local variable locations and values that are valid at an
address in the binary, collecting execution and stack traces, aggregating trace data,
and dynamically instrumenting a binary in response to newly collected information.

We also discuss several usage scenarios of our tool kits in binary analysis
(Sect. 1.6) and binary modification (Sect. 1.7) applications. Analysis applications
of our tools (Fig. 1.3) include enhancing debugging information to provide a more
accurate mapping of memory and register locations to local variables, improved
analysis of indirect branches, and improved detection of function entry points that
lack symbol information. Applications of our tools for binary modification include
instruction replacement, control flow graph modification, and stack layout modifi-
cation. Some of these analysis and modification applications have already proven
useful in high-performance computing. We conclude (Sect. 1.8) with a summary of
future plans for development.

1.2 DyninstAPI and Components

DyninstAPI provides an interface for binary instrumentation, modification, and
control, operating both on running processes and on binary files (executables and
libraries) on disk. Its fundamental abstractions are points, specifying where to instru-
ment, and snippets, specifying what instrumentation should do. Dyninst provides
platform-independent abstractions representing many aspects of processes and bina-
ries, including address spaces, functions, variables, basic blocks, control flow edges,
binary files and their component modules.

Points are specified in terms of the control flow graph (CFG) of a binary. This
provides a natural description of locations that programmers understand, such as
function entry/exit, loop entry/exit, basic block boundaries, call sites, and control
flow edges. Previous work, including earlier versions of Dyninst [7], specified instru-
mentation locations by instruction addresses or by control flow transfers. Bernat and
Miller [5] provide a detailed argument why, in general, instrumentation before or after
an instruction, or instrumentation on a control transfer, does not accurately capture
certain important locations in the program. In particular, it is difficult to characterize
points related to functions or loops by using only addresses or control transfers.
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Snippets are specified in a platform-independent abstract syntax tree language [7].
The platform-independent nature of the instrumentation specification allows Dyninst-
based tools (mutators) to, in most cases, be written once and run on any supported
platform.

To instrument a binary, extra space must be provided in the code for the instru-
mentation code. This space may be created by relocating some or all of the original
code in order to provide room for instrumentation. The instrumentation and asso-
ciated program code may be positioned so that the instrumentation executes inline
with its program context or out-of-line from its context. Bernat and Miller [5] deter-
mined that, given current processor characteristics, relocating whole functions and
generating their associated instrumentation inline minimizes overhead by improving
instruction cache coherence compared to other approaches.

Dyninst has been deconstructed into several component libraries [24], each per-
forming some aspect of binary instrumentation, analysis, or control (Fig. 1.1). As we
will see, many of these components are commonly used in various smaller subsets
for common tasks in parallel tool design. As a benefit of creating smaller compo-
nents, each of these components deals with a much smaller amount of platform
variation than Dyninst. For example, while Dyninst supports a wide variety of archi-
tectures and operating systems, the SymtabAPI component is concerned primarily
with the details of binary file formats. This allows us to largely simplify SymtabAPI
to handling ELF and PE files correctly, with small and well-defined architecture and

Fig. 1.1 Dyninst and its
component libraries
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operating system specific subcomponents. The Dyninst components include tools
for analyzing and interpreting binaries, interacting with processes, and modifying
binaries and inserting instrumentation. The analysis and interpretation components
include SymtabAPI, which provides a format-independent representation of binary
files and debugging information; InstructionAPI, which disassembles instructions;
ParseAPI, which constructs control flow graphs; and DataflowAPI, which contains
a selection of data flow analysis algorithms used inside Dyninst. StackwalkerAPI
and ProcControlAPI, respectively, collect stack traces from processes and control
processes and threads via the debug interface of the operating system. PatchAPI,
CodeGen, DynC, and DyninstAPI itself collectively provide the point-snippet inter-
face used by instrumentation, the interfaces for control flow modification, and a
C-like wrapper language to generate snippet construction code. The components
and their supported platforms are listed in Table 1.1.

Table 1.1 Dyninst components and their capabilities

Component Description Supported platforms

SymtabAPI Reads symbol tables and debugging
information

ELF, PE

InstructionAPI Decodes instructions to an operation
and operand ASTs

x86, x86_64, PowerPC32,
PowerPC64

ParseAPI Constructs control flow graphs x86, x86_64, PowerPC32,
PowerPC64

DataflowAPI Performs data flow analyses:
slicing, register liveness, stack
analysis, symbolic evaluation

x86, x86_64, PowerPC32,
PowerPC64

StackwalkerAPI Collects call stacks Linux, Windows, x86, x86_64,
PowerPC32, PowerPC64, ARMv8

ProcControlAPI Provides a platform-independent
layer on top of the operating system
debug interface

Linux, Windows, x86, x86_64,
PowerPC32, PowerPC64, ARMv8

PatchAPI Provides a point of indirection to
represent transformations to a
control flow graph

x86, x86_64, PowerPC32,
PowerPC64

CodeGen Generates code for instrumentation
snippets and code to ensure those
snippets do not interfere with the
original program

x86, x86_64, PowerPC32,
PowerPC64

DynC Provides a C-like language for
specifying instrumentation snippets

x86, x86_64, PowerPC32,
PowerPC64
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1.3 MRNet

Scalable computation is an important challenge, whether you are building appli-
cations, tools, or large scale distributed systems. The challenge of scale requires
that developers for distributed systems select computational patterns that have the
properties that allow for scaling and the expressiveness to apply to a broad range of
problems. Tree-based Overlay Networks (TBONs) are an ideal method of paralleliz-
ing computation supplying a scalable communication pattern that can express the
solution to a wide range of distributed computation problems. TBONs connect a set
of processes into a tree layout where leaf nodes perform the bulk processing work,
internal tree processes perform aggregation/multicasting of results out of the tree,
and a single front end process which aggregates results to produce a single output.
Scalability is achieved with TBONs by use of aggregation and multicast filters to
reduce data moving through the tree.

The Multicast Reduction Network (MRNet) [26] is a framework that implements
the TBON model to provide scalable communication to distributed system devel-
opers. MRNet handles the creation and connection of processes into a tree network
layout. MRNet assigns each process a role as a frontend (FE), communication (CP),
or backend (BE) process, as shown in Fig. 1.2. The size of the tree and layout of

Fig. 1.2 The layout of a MRNet tree and its various components
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processes can be modified by users without modifying the program, allowing a single
codebase to scale from one process to millions. Users can supply custom aggregation
and multicast filters to MRNet. The MRNet framework has been used extensively
to build highly scalable tools and applications that are in use on leadership class
machines [2, 3, 28].

1.4 Performance Tools

Performance tools collect and interpret information about how a program uses var-
ious system resources, such as CPU, memory, and networks. There are two notable
categories of performance tools where Dyninst components have been used as part
of these tasks: sampling tools and tracing tools. Figures 1.3 and 1.4 illustrate how
performance tools may use Dyninst and its components in both analysis and instru-
mentation contexts.

1.4.1 Sampling Tools

Sampling tools periodically observe some aspect of program behavior and record
these observations. One common form of sampling is call-stack sampling, which
collects a set of program counter (PC) values and return address (RA) values that
comprise the call stack of an executing thread. From these addresses in the program’s
code segment, one may derive a variety of further context:

• Binary file
• Source file
• Function

Fig. 1.3 Tools using
Dyninst’s binary analysis
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Fig. 1.4 Tools using Dyninst’s instrumentation, monitoring, and debugging components

• Source line
• Loop
• Basic block

HPCToolkit [1] and Open|SpeedShop [29] both use SymtabAPI and ParseAPI
to determine this contextual information from the addresses in a call stack. Recon-
structing both the full source-level calling context (including inline functions) and
the loop nesting context (including irreducible loops) from a call stack provides users
with additional insight into where their code suffers from performance problems.

1.4.2 Tracing Tools

Tracing may be performed at function, basic block, memory reference, or instruction
granularities. It captures records of events as they occur in the program. Many well-
known performance tools collect or analyze tracing data. In particular, COBI [23],
Tau [31], and Extrae [20] can use Dyninst’s binary rewriting functionality in order
to insert instrumentation that produces tracing data.

Instrumentation-based tracing relies on the insertion of instrumentation at the var-
ious points where trace data is to be collected. This instrumentation may be inserted
as source code, during the compilation and linking process, through modification of
the binary once it has been linked, or at run time. Instrumentation that occurs at any
point up to and including the linking process we describe as source instrumentation;
instrumentation that occurs afterward we describe as binary instrumentation. Dyninst
and its components are concerned with binary instrumentation.

Binary instrumentation relies on the ability to understand and manipulate binary
code without access to authoritative source code or compiler intermediate represen-
tations. It is necessarily a more difficult process than source instrumentation, but
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comes with compensating advantages. First, if a user wishes to dynamically mod-
ify the set of events that they are recording based on the data they have collected,
it is necessary to insert or remove instrumentation at run time. In the subset of
cases where the user already knows what instrumentation they would wish to insert
prior to run time, this capability can be emulated at the source level by selectively
enabling and disabling instrumentation execution, but binary instrumentation allows
arbitrary instrumentation to be inserted at arbitrary points in response to observed
events. Second, binary instrumentation can be inserted without recompiling a pro-
gram. Particularly in cases where a user wishes to instrument a small portion of a
large application, this can provide a significant time savings. Third, while source
instrumenters have been improving their ability to avoid perturbing the resulting
binary, they are not perfect in this respect. Binary instrumentation, of course, also
perturbs the resulting binary, but its starting ground truth is precisely the binary that
the compiler would generate without instrumentation.

In addition to tracing control flow events, the Dyninst interface allows users to per-
form tracing of a wide variety of memory operations: tracking allocations and deal-
locations, instrumenting memory accesses, and observing the effective addresses
and byte counts they affect. As with all forms of fine-grained (instruction level)
instrumentation, the overhead imposed by observing and recording every memory
access is quite high in most cases. It is consequently common in our experience for
users to develop specialized tools for memory tracing to diagnose particular per-
formance problems. We hope that broader exposure of the Dyninst memory instru-
mentation features will lead to more general-purpose memory instrumentation tools
being developed, both for performance analysis and for debugging.

1.5 Debugging Tools

In addition to analyzing the performance of parallel software, it is often necessary to
debug it. The combination of certain Dyninst components with MRNet has proven
to be a potent combination for developing lightweight tools for identifying bugs at
extremely large scales.

1.5.1 Stack Trace Aggregation

A basic and useful approach to developing highly scalable debugging tools is stack
trace aggregation: collecting stack traces from all of the threads and processes in a
large parallel program, and merging them into a call stack prefix tree. Examples of this
approach include Stack Trace Analysis Tool (STAT) [3] from Lawrence Livermore
National Laboratories (LLNL) and Cray’s Abnormal Termination Processing (ATP)
tool [9]. Each of these tools uses StackwalkerAPI to collect call stacks. Users of the
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tools may collect local variable information and function contexts, as in Sect. 1.4.1,
using SymtabAPI and potentially also ParseAPI. MRNet is then used by these tools
to aggregate the stack traces in a scalable manner into a call stack prefix tree. STAT
and ATP differ in their intended use cases; STAT is often used to debug hangs and
stalls, whereas ATP is specifically focused on debugging crashes.

STAT has been successfully used to detect a wide variety of problems in both soft-
ware and hardware. It has detected bugs in the LUSTRE filesystem, slow decremen-
tors on particular processor cores resulting in 1,000,000x slowdowns in sleep(),
and numerous bugs in application code as well [17]. STAT has collected call stacks
from the entire Sequoia supercomputer (approximately 750,000 cores), and has col-
lected call stacks from approximately 200k cores in under a second [19]. ATP is a
standard part of Cray’s Linux distribution [9], and is automatically invoked whenever
an appropriately launched application crashes.

1.5.2 Distributed Debuggers with MRNet

MRNet has also been used as infrastructure for providing scalable control of existing
full-featured debugging tools. The TotalView debugger has employed MRNet as a
distributed process control layer [22], as has Cray’s CCDB debugger.

TotalView is a high performance parallel debugger developed by Roguewave
capable of debugging and profiling applications running on large node counts. With
Totalview, application developers can perform wide range of debugging and profiling
tasks such as setting breakpoints, reading and writing memory locations and registers,
and single stepping through an application. MRNet is used by Totalview to scale
these operations across an application running on thousands of nodes. A tree based
overlay network is constructed between the application processes running on nodes
and a frontend process that controls debugging and profiling operations. The frontend
presents a user with a graphical representation of the current state of a running
distributed application. A user can then issue commands (such as setting a breakpoint)
that are passed through the overlay network down to application processes where
they are executed. TotalView uses aggregation filters to reduce the volume of data
generated by application processes so that a snapshot of the current state of a running
application can be presented to the developer. Multicast filters are used by TotalView
to broadcast commands down to individual nodes.

The Scalable Parallel Debugging Library [16] (SPDL), which provides a generic
parallel debugging interface on top of MRNet and Eclipse SCI [8], has been used
to extend Cray’s CCDB debugger to larger scales [10]. SPDL provides comparable
infrastructure to the TotalView implementation described above. CCDB, using this
infrastructure, demonstrates command latency of less than a second at scales up to
32,000 processes.
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1.5.3 Dynamic Instrumentation for Debugging

For some debugging problems, stack traces are insufficient, and the programmer
requires knowledge of how the current point of execution was reached. This is an
area where dynamic instrumentation can be applied in at least two ways: as a method
for generating automated equivalents of typical interactive debugging commands,
and as a method for generating debugging traces that precisely capture interesting
behavior. We consider an example of each of these applications.

DySectAPI [15] builds on the foundation of STAT, and attempts to provide the
ability to script gdb-like query and process control operations: breakpoints, probe
points, conditional breakpoints and watchpoints, and access to registers and variables.
Much of this functionality can be exposed with only trivial extensions to STAT (for
instance, allowing the user to write to local variables as well as reading them); some,
however, requires significantly more of the Dyninst component stack. In particular,
the execution of an arbitrary remote procedure call requires some form of code
generation.

SystemTap [12] is a kernel instrumentation and tracing tool developed by RedHat
that uses Dyninst instrumentation to extend its capabilities to user space. The current
SystemTap model is mostly oriented towards instrumentation specified statically, as
it must support the compilation of scripts to kernel modules. For those cases where
it is performing instrumentation that appears to be dynamic, that appearance is in
most cases granted through conditional execution. SystemTap does allow scripts to
invoke arbitrary system commands; we believe that special handling of the recursive
invocation of SystemTap itself through dynamic instrumentation would increase the
power of this idiom.

1.6 Analysis Tools

Improving the understanding of a binary’s behavior can allow other tools to perform
their tasks better. We present a data flow analysis use case, where slicing is used to
improve the understanding of local variable access, and a control flow analysis use
case, where accurate understanding of the CFG of a binary allows more efficient and
accurate instrumentation within Dyninst itself.

1.6.1 Slicing

Slicing [33] is a data flow analysis that determines which instructions affect (back-
wards slicing) or are affected by (forwards slicing) the value of a given abstract loca-
tion (register or memory location) at a given instruction. The DataflowAPI includes
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a slicing implementation that refines this concept to consider not just instructions,
but assignments within those instructions.

The NAPA tool, currently under development at LLNL, uses DataflowAPI’s slicer
in an effort to improve the ability of tools to match individual load and store instruc-
tions with their corresponding variables. In principle, debugging information such
as DWARF [11] should contain sufficient information that all such memory accesses
can be resolved. In practice, for many data structures, this is not the case. For exam-
ple, while the debugging information may contain one of the ways to refer to a
location within an aggregate, the actual load or store will use a different alias to the
same location. Applying a backwards slicing analysis to the load or store, searching
through the containing function until the effective address being accessed has been
derived from some set of local variables, improves the input data to further analyses,
such as blame assignment [27].

1.6.2 Binary Parsing

The goal of parsing a binary is to represent the binary with code constructs that are
familiar to programmers, including CFGs, functions, loops and basic blocks. These
code constructs are the foundations for performing a data flow analysis, such as
slicing (Sect. 1.6.1), and specifying instrumentation points, such as instrumenting at
the entry of a function or at the exit of a loop.

Algorithms to recover these code constructs from binaries are encapsulated in
ParseAPI. ParseAPI uses recursive traversal parsing [30] to construct basic blocks,
determine function boundaries, and build CFGs. It starts from known entry points
such as the program entry point and function entry points from symbol tables and fol-
lows the control flow transfers to build the CFG and identify more entry points. Not
all code will necessarily be found by recursive traversal alone; this leaves gaps [14] in
the binary where code may be present, but has not yet been identified. Furthermore,
recursive traversal does not explicitly address the problem of how to resolve control
flow targets in non-trivial cases, such as indirect branches. If these challenges are
not handled properly, the parser would miss real code, have inaccurate CFGs, and
observe degrading qualities of data flow analysis, binary instrumentation, and binary
modification. We describe our new techniques for resolving jump tables, which repre-
sent a well-defined subset of indirect branches, and for gap parsing, which improves
our parsing coverage for stripped binaries.

Jump tables are commonly used to implement switch statements and loop
unrolling optimizations and they often represent intraprocedural control transfers.
Because of Dyninst’s function-based relocation approach (Sect. 1.2), it is necessary
to safely overapproximate the potential targets of an indirect branch to relocate a
function. This means that we must ensure that our understanding of a function’s
structure does not miss any code, and our understanding of its basic blocks does not
ignore any block boundaries. In practical terms, this means that our analysis of an
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indirect branch must contain a proper superset of the true targets of that branch, or we
will be unable to safely relocate and instrument the function containing the indirect
branch.

We implemented a new slicing-based data flow analysis [21] to improve our
handling of jump tables, relying on the following two key characterizations of jump
tables: (1) jump table entries are contiguous and reside in read-only memory regions;
(2) the jump target depends on a single bounded input value, which often corresponds
to the switch variable in a switch statement. Our analysis is able to handle several
variations of jump tables that appear in real software: (1) the table contents can be
either jump target addresses or offsets relative to a base address; (2) the table location
can be either explicitly encoded in instructions or computed; (3) the input value can
be bounded through conditional jumps or computation; (4) arbitrary levels of tables
involved in address calculation, where prior level tables are used to index into later
level tables.

Our evaluations show that the new analysis can reduce the number of uninstru-
mentable functions in glibc by 30 % with a 20 % increase in parse overhead and
reduce 7 % uninstrumentable functions in normal binaries with a 5 % increase in
parse overhead.

Stripped binaries are significantly more difficult to analyze because when no func-
tion entry points are present, it is not easy to decide which addresses to start the control
flow traversal. Recent research has used machine learning based approaches to learn
code features such as instruction sequences [4, 25] or raw byte sequences [32] for
identifying function entry points. Dyninst 9.0 uses Rosenblum et al’s approach [25] to
select instruction sequences from a set of training binaries and assigns each selected
instruction sequence a weight to represent the probability that an address is a function
entry point if the sequence is matched at the address. We scan through the binary
searching for addresses where the probability that the address is a function entry
point is greater than a configurable threshold. For each address where this is true,
we then apply Dyninst’s recursive traversal implementation, analyzing the function
implied by this entry point and all of its callees to reduce the size of the gaps that
must be scanned. Note that if we have identified a function entry point with some
probability p, every one of its call targets must be a function entry point with prob-
ability q ≥ p. Thus, all of the function entry points generated by this approach will
be true function entry points with p ≥ t for a threshold t .

We compared the abilities of two versions of Dyninst to identify function entry
points in stripped binaries. Dyninst 8.2.1 uses a few manually-designed instruction
patterns and Dyninst 9.0 uses the machine learning approach to train its model. The
test binaries are from binutils, coreutils, and findutils, built with ICC and GCC, at
-O0 to -O3. The test results are summarized in Table 1.2. Precision, in this case, is
the percentage of function entry points identified by Dyninst that are real function
entry points; recall is the percentage of real function entry points identified as such.

We make two observations about these results. First, we see that the machine
learning approach dramatically increases the recall in both 32-bit and 64-bit binaries,
at the cost of some precision. This means that ParseAPI can discover much more code
in gaps, with some of the discovered code being not real code. Second, the results
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Table 1.2 Gap parsing test results

Version Platform Average precision (%) Average recall (%)

Manually-designed
patterns (8.2.1)

64-bit x86 98.1 37.4

Manually-designed
patterns (8.2.1)

32-bit x86 95.6 53.9

Machine
learning-derived
idioms (9.0)

64-bit x86 94.7 83.2

Machine
learning-derived
idioms (9.0)

32-bit x86 97.1 93.8

show that 64-bit function entry points are more difficult to identify. Our examination
of the rules generated for Dyninst 9.0 suggests that the increased size of the register
set and the consequent decreased need to use the stack for parameter passing and
temporary space are largely responsible for this increased difficulty.

1.7 Modification Tools

In addition to performing instrumentation, where the behavior of the original binary
is not changed, Dyninst and its components allow modification of the binary. This
modification can occur at the instruction level, at the CFG level, or even at the level
of data layout on the stack. We present an example of each of these use cases.

CRAFT [18] is a tool that determines which double-precision values in a binary
can best be replaced by single-precision, attempting to obtain the maximum perfor-
mance benefit while ensuring that output accuracy remains within a user-specified tol-
erance. To do this, it replaces each double-precision instruction with a code sequence
that performs the same operation in parallel in single and double precision, and then
tracks the error introduced by conversion to single precision. Figure 1.5 illustrates
this operation.

Bernat and Miller [6] demonstrated the use of Dyninst components to apply secu-
rity patches at the binary level to a running process by matching a CFG fingerprint,
constructing the code added by the patch in snippet form, and modifying the control
flow of the binary appropriately. This application, unlike CRAFT, typically works
by replacing blocks and edges as an entire subgraph of the CFG; Bernat and Miller’s
example patches the Apache HTTP server by wrapping a function call in an appro-
priate error checking and handling conditional. This CFG-based approach to binary
modification does not rely on symbols or particular instruction patterns. This allows
it to properly apply patches across binaries generated by a wide range of compilers,
and to be robust against inlining of the location to be patched.
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Fig. 1.5 Replacing instructions in basic blocks with CRAFT [18]

Gember-Jacobson and Miller [13] implemented primitives within Dyninst that
allow the modification of functions’ stack frames in well-specified manners: insertion
and removal of space, and exchanging two local variables within the same contiguous
stack region. This work does not alter the control flow of the binary at all; its purpose
is solely to affect the data layout of the stack. In addition to the modifications that
can be expressed purely in terms of insertion, removal, and exchange, they provide
implementations for inserting stack canaries into functions and randomizing the order
of local variables on the stack. Unlike the previous two examples, which altered the
control flow graph of the program, this work modifies the data flow graph of the
program while holding control flow constant.

1.8 Future Work

Dyninst and MRNet have become projects with a broad base of contributors and
ongoing development. As we deconstructed Dyninst into smaller tool kits, we refined
which complexities are actually necessary, and refined our abstractions to better
match what users need. In particular, the deconstruction of Dyninst has shown us
that Dyninst components may be used in a far broader set of applications than we
initially expected.

In Dyninst, we plan to add full support for ARM64/Linux, add support for 64-bit
Windows, and add support for Windows binary rewriting in the near term. We are also
continually working to support new high-performance computing environments. In
MRNet, we plan to implement a zero-copy interface that will improve performance.
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Both Dyninst and MRNet are available via anonymous git checkout from http://
git.dyninst.org. The Dyninst mailing list is dyninst-api@cs.wisc.edu. The MRNet
mailing list is mrnet@cs.wisc.edu. Contributions, questions, and feature requests
are always welcome.
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