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Abstract
Binary code analysis is widely used to help assess a pro-
gram’s correctness, performance, and provenance. Binary
analysis applications often construct control flow graphs,
analyze data flow, and use debugging information to un-
derstand how machine code relates to source lines, inlined
functions, and data types. To date, binary analysis has been
single-threaded, which is too slow for convenient use in per-
formance tuning workflows where it is used to help attribute
performance to complex applications with large binaries.
This paper describes our design and implementation for

accelerating the task of constructing control flow graphs
(CFGs) from binaries by using multithreading. Prior research
focuses on algorithms for analysis of challenging code con-
structs encountered while constructing CFGs, including func-
tions sharing code, jump tables, non-returning functions, and
tail calls. These algorithms are described from a program
analysis perspective and are not suitable for direct paral-
lel implementation. We abstract the task of constructing
CFGs as repeated applications of several core CFG opera-
tions that include creating functions, basic blocks, and edges.
We then derive CFG operation dependency, commutativity,
and monotonicity. These operation properties guide our de-
sign of a new parallel analysis for constructing CFGs. Using
64 threads, we achieved as much as 25× speedup for con-
structing CFGs and 8× for a performance analysis tool that
leverages our new analysis to recover program structure.
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1 Introduction
Binary code analysis is a foundational technique for a vari-
ety of applications, including performance analysis [2, 8, 22],
software correctness [3, 11], software security [14, 31, 32],
and software forensics [21, 26]. Important binary code anal-
ysis capabilities include constructing control flow graphs
(CFGs), analyzing control flow and data flow, and extract-
ing source line mappings and data types from debugging
information, when it is available. Traditionally, binary analy-
sis applications are single-threaded. However, use of binary
analysis as part of iterative workflows would substantially
benefit from accelerating its performance.
Increasingly, compilation of sophisticated applications

and frameworks yields multi-gigabyte binaries. We have
witnessed this trend in both multi-physics applications de-
veloped by national laboratories as well as popular machine
learning frameworks such as TensorFlow [1]. The develop-
ers of such large software systems use the following perfor-
mance analysis workflow to optimize their codes: (1) compile
the source code to generate the binary program, (2) measure
the performance of the binary during execution, (3) attribute
measurements to the corresponding source code constructs
using binary analysis, and (4) optimize the source guided
by performance metrics. These four steps are repeated until
developers are satisfied with their software’s performance.
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In this performance analysis cycle, using binary analysis
to construct CFGs to understand loop nests in optimized code
and report performance at the loop nest level is extremely
useful for scientific codes [29]. However, binary analysis
must be repeated after any source code change because even
small code changes can lead to dramatically different bina-
ries, especially with C++ template instantiation and aggres-
sive compiler optimizations. Single-threaded binary analysis
takes too long to analyze large binaries: it takes more than 20
minutes to analyze a 7.7GiB shared library from TensorFlow.
Such slow analysis would interfere with the workflow of de-
velopers tuning code for production. This observation holds
even for long-running, iterative scientific computations as
they can be tuned based on analysis of measurements of a
few iterations.

To address speed requirements imposed by analyzing large
binaries, we applied data parallelism to several binary analy-
sis tasks needed for performance analysis, including parsing
DWARF debugging information, identifying loops, and iterat-
ing over functions. However, we quickly encountered a chal-
lenging bottleneck: constructing Control FlowGraphs (CFGs)
for large binaries, which involves identifying functions, con-
structing basic blocks,and connecting edges between basic
blocks. We observed that serial CFG construction can take
over 80% of the total runtime.

In this paper, we present our design and implementation
of parallel CFG construction using function level parallelism.
We observe that existing serial algorithms for CFG construc-
tion are described from a program analysis perspective, fo-
cusing on understanding complex machine code generated
by compilers [10, 20, 28], including non-returning functions,
tail calls and jump tables. They do not explicitly identify data
or analysis dependencies, which are crucial concepts for par-
allel algorithms. This gap leads to two major challenges.
First, because binary functions may share code, threads

analyzing different functions may end up concurrently an-
alyzing shared code and require synchronization. Without
a clear specification of analysis dependencies and interac-
tion, adding synchronization in an ad-hoc fashion is likely to
cause either incorrect algorithms (missing synchronization)
or poor performance (adding unnecessary synchronization).

Second, in contrast to serial CFG construction algorithms,
which assume a static CFG before and while performing a
specific analysis, a parallel algorithm for CFG construction
needs to consider concurrent graph changes by other threads.
We identify flaws of existing serial analysis for jump tables
and tail call identification, where the final results of these
analyses may change if they are applied in a different order.
To address these two challenges, we abstract CFG con-

struction as repeated applications of primitive CFG construc-
tion operations. These operations include creation of func-
tions, basic blocks and edges, modification of basic block
ranges, and removing blocks and edges. We derive operation

properties, including operation dependencies, commutativ-
ity, and monotonicity, and use this theoretical framework
to reason about the correctness and performance of CFG
construction algorithms. Based on this abstraction, we de-
sign a new parallel algorithm for CFG construction, which
expresses parallelism as commutative operations, addresses
correctness issues in existing serial algorithms, and improves
performance by addressing operation dependencies.
We implemented our new parallel CFG construction in

the Dyninst binary analysis and instrumentation toolkit [23],
and evaluated the performance characteristics of our parallel
binary analysis with a number of large binaries. We achieve
as much as 25× speedup when constructing control flow
graphs using 64 hardware threads. We then showcase the
benefits of parallel binary analysis with hpcstruct, a utility
in HPCToolkit [2], which relates performance measurements
back to source code; we achieved 8× speedup for hpcstruct.

In summary, this work makes the following contributions:
1. An abstraction of CFG construction that is suitable for

parallel implementation.
2. A new algorithm for parallel CFG construction that is

derived from the properties of CFG operations.
3. An implementation of the new algorithm in Dyninst

that can be used by other binary analysis application
developers.

4. Demonstrating the effectiveness of our parallel anal-
ysis with hpcstruct, which significantly accelerates
program structure recovery for performance analysis.

2 Related Work
There is rich literature about constructing CFGs from bina-
ries [4, 10, 15, 16, 27]. A commonly used approach is control
flow traversal [27, 30]. Starting from known function entry
points such as the ones found in the symbol table, it follows
control flow transfers in the program to discover code and
identify additional function entry points for further analysis.
We discuss several challenging code constructs that must be
addressed during control flow traversal and representative
binary analysis tools that implement control flow traversal.

2.1 Challenging Code Constructs
Functions sharing code:A common compiler optimization
is to share binary code between functions with common func-
tionality, such as error handling code and stack tear-down
code. We have observed such code sharing in several ver-
sions of glibc and code compiled by the Intel Compiler Suite
(ICC). In addition, binary analysis tools typically represent a
function with multiple entry points as multiple single-entry
functions that share code. Thus, Fortran functions with mul-
tiple entry points specified with the entry keyword, and
binaries on Power 8 or newer (the ABI specifies that each
function has at least two entry points) lead to functions shar-
ing code. This issue can be addressed by defining a function
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as the basic blocks that are reachable from the function entry
by traversing only intra-procedural edges [5, 20].
The actual fraction of shared basic blocks varies signifi-

cantly. On Power 8 or newer, almost all of the basic blocks
are shared due to its new ABI specification. On x86-64, 86%
of the binaries in /lib64 on a Redhat 7.9 system have no
shared blocks; however, we have seen sharing as high as
70% in /lib64/libisc.so. The TensorFlow binary studied
in Section 6 has 3.5% shared blocks, including blocks shared
by 186 functions. Correctness requires special handling for
shared blocks, which is an integral part of our strategy.

Non-returning functions: Binary analysis tools often
define a call fall-through edge, which is a summary edge rep-
resenting that the control flow at a function call will return
to the call site. However, a function call to a non-returning
function will never return to its call site, so there should be
no call fall-through edge at such call sites. A wrongly created
call fall-through edge can lead to confusing control flow and
cascading impacts on binary analysis applications. A general
approach for identifying non-returning functions is to match
function names against known non-returning functions such
as exit and abort and use an iterative analysis to identify
functions that always end in calls to non-returning func-
tions. One example is a fixed point analysis, which defers the
parsing of a call fall-through edge until the callee’s return
status is determined and marks every function in a cyclic
dependency as non-returning [20].

Jump tables: Compilers often emit indirect jumps for
switch statements. The targets of these indirect jumps are
calculated based on jump table data in the binary. It is critical
for complete control flow traversal to resolve jump targets
calculated through jump tables. A common approach is to use
backward slicing to identify the instructions that are involved
in the target calculation and construct a symbolic expression
of the jump target to identify actual jump targets [10, 20, 28,
33].

Tail calls: A tail call [7] is a compiler optimization that
uses a jump instruction at the end of a function to target
the entry point of another function, thus not every branch
should be labeled as intra-procedural. Tail calls are often
recognized through heuristics [10, 20], including (1) a branch
to a known function entry is a tail call; (2) a branch to a basic
block that is reachable through only intra-procedural edges
of the current function is not a tail call; (3) if there is stack
frame tear down before a branch, it is a tail call.

2.2 Binary Analysis Tools
Recent binary analysis tools address these challenging code
constructs in a similar way, including angr [28], Dyninst [20],
and rev.ng [10]. However, their software infrastructures have
distinct characteristics regarding analysis speed.
Both angr and rev.ng first lift machine instructions to an

Intermediate Representation (IR) and then perform analysis
on the resulting IR. angr uses Valgrind’s VEX IR and rev.ng

uses QEMU to lift a binary to LLVM IR. While this approach
has the advantages of not being architecture specific and
facilitating the development of complex data flow analysis
such as points-to analysis and value set analysis, it leads to
a significant performance slowdown for two reasons. First,
the lifting process itself is slow. Second, the number of as-
signments in the IR is significantly larger than the number
of machine instructions as one instruction may be lifted to
multiple IR assignments, especially on CISC architectures
such as x86-64.
In contrast, Dyninst directly operates with the binary.

Dyninst’s instructionAPI provides an architecture indepen-
dent interface for querying instruction opcodes, instruction
operands, registers, and memory addressing modes. The
CFG construction code inside Dyninst works with this “bare-
metal” instruction interface. The only exception is that when
Dyninst resolves jump tables, Dyninst lifts machine instruc-
tions to ROSE IR [24]. However, since lifting is applied to
instructions that are involved in the jump table calculation
found by backward slicing, typically only a small portion of
the binary is lifted.

3 Notation
To provide a foundation for discussing parallel CFG Con-
struction, we first present an abstraction of control flow
graphs and a series of core operations on them. We build
upon the abstraction designed for binary modification [5],
which works with fully constructed CFGs, and extend it to
abstract the process of constructing CFGs.

Definitions: We define a CFG G = ⟨B,C,E, F ⟩ to be a
tuple of the following:

• B is a set of address ranges [s, e), representing basic
blocks within the binary. Each of these contains at
most one control flow instruction, which if present is
the final instruction within the range, and has incom-
ing control flow at only address s .

• C is a set of candidate blocks [t], representing ad-
dresses which are known to start basic blocks but do
not have known ending addresses yet.

• E ⊆ {(a → b) : a ∈ B,b ∈ B ∪C} is a set of directed
edges between basic blocks, representing possible con-
trol flow executions between blocks.

• F ⊆ B ∪C is the set of function entry blocks.
Partial order: We define a partial order between CFGs,

such that a larger graph includes more control flow elements.
We define G1 ≼ G2 if all of the following are true:

• The address ranges contained inG1 are contained by
G2. Formally, let A1 and A2 be the addresses contained
by the blocks in B1 and B2 respectively. Then we re-
quire A1 ⊆ A2.

• The explicit control flow inG1 is also inG2, regardless
of adjustments to block ranges. Formally, for every
edge ([sa , ea) → [sb , eb )) or ([sa , ea) → [sb ]) in E1,
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E2 must contain one of the edges ([s ′a , ea) → [sb , e
′
b ))

or ([s ′a , ea] → [sb ]). Intuitively,G2 may contain addi-
tional edges that target addresses inside a or b, causing
them to be split, but the end address of the source block
ea and the start address of the target block sb are pre-
served under the partial order.

• The implicit control flow through a basic block inG1 is
preserved inG2. Formally, for every block b = [s0, e) ∈
B1 there is a sequence of blocks [s0, s1), . . . , [sn , e) ∈
B2 such that ([si , si+1) → [si+1, si+2)) ∈ E2 for i =
0, . . . ,n − 2. This means that a block b in G1 can be
split into multiple smaller blocks in G2 to incorporate
other incoming control flow.

• Function entry labels inG1 are preserved inG2, regard-
less of range adjustments. Formally, for every block
[s, e) or [s] ∈ F1, there is a block starting at the same
address, i.e., [s, e ′) or [s] ∈ F2.

CFG operations: To construct a CFG based on an under-
lying binary, we define several core operations:

Block End Resolution (BER): GivenG containing a candidate
block [t] ∈ C , we define OBER (G, [t]) as G with the candi-
date block [t] replaced by a basic block starting at t with a
determined end address. There are three possible cases:

• Block splitting. If there is an existing block b = [s, e) in
B such that s < t < e , then we have to split b into the
basic blocks [s, t) and [t , e). Any incoming edges on b
are redirected to [s, t), while outgoing edges on b and
incoming edges on [t] are moved to [t , e).

• Early block ending. If there is an existing block b =
[s, e) in B such that t < s and the range [t , s) contains
no control flow instructions, we replace [t] with [t , s)
as before and add the edge ([t , s) → [s, e)).

• Linear parsing. If neither of the previous cases apply,
let e be the address directly after the first control flow
instruction following t . We replace [t] with [t , e) as in
the first case.

Direct Edge Creation (DEC): Given a block a in a graph
G ending in a direct control flow instruction, we define
ODEC (G,a) as G with outgoing edges appended to a, based
on the control flow instruction within a (if one exists). There
are three cases:

• If a terminates with an unconditional jump to address
t , we add the edge (a → [t]).

• If a = [s, e) terminates with a conditional jump to ad-
dress t , we add edges for the cases where the condition
is true (a → [t]) and false (a → [e]).

• If a terminates with a function call instruction to ad-
dress t , we add the edge (a → [t]).

Call Fall-Through Edge Creation (CFEC): Given an edge e =
([s, e) → f ) in a graph G where [s, e) contains a function
call instruction and f ∈ F , we define OCFEC (G, e) as G po-
tentially with the additional edge ([s, e) → [e]) summarizing
the execution of the callee function. Correct application of

this operation depends on non-returning function analysis
to identify whether the target function can return or not.
Indirect Edge Creation (IEC): Given a block a in a graph

G which contains a jump to a dynamic address, we define
OI EC (G,a) asG with the additional edges (a → [t1]), . . . , (a →

[tn]), where t1, . . . , tn are target addresses determined stati-
cally by inspecting potential code paths leading to the final
instruction of a. If this analysis is unable to determine a
constant target for a code path (e.g. indirect call through a
function pointer), no edges are added and the inspection of
other possible paths continues unmodified.

Function Entry Identification (FEI): Given an edge e = (a →

b) in a graph G, we define OF EI (G, e) as G with the block
b labeled as a function entry. This operation is trivial if e
was created by an explicit call instruction, but further heuris-
tics are required to identify functions that are reached only
through optimized tail calls.
Edge Removal (ER): Given an edge e = (a → b) within a

graph G, we define OER (G, e) as G with the edge e removed
along with any blocks and edges that are no longer reachable
from any function entry point. Formally, let B′ ⊆ B, C ′ ⊆ C ,
and E ′ ⊆ E be the sets of blocks, candidate blocks and edges
inG reachable from any block in F without traversing e . We
can then define:OER (G, e) = ⟨B′,C ′,E ′, F ⟩. An edge removal
operation may lead to removing multiple blocks and edges
from the graph.
Starting with the initial graph G0 = ⟨�, F0,�, F0⟩, where

F0 is the set of candidate function entry blocks discovered
via the binary’s symbol table and unwind information, the
task of CFG construction can be abstracted as repeated ap-
plication of these operations. We denoteG1,G2, · · · ,Gn−1 as
the intermediate results and Gn as the final CFG.

4 CFG Operation Properties
We present several important properties of the defined opera-
tions, assess existing serial algorithms with these properties,
and use these properties to identify critical correctness and
performance issues for parallel CFG construction.

4.1 Properties
Operation dependencies: To correctly build the CFG, op-
erations should be applied with an order that satisfies the
dependencies among them. We identify two types of depen-
dencies:

Applicability Dependency. We cannot apply operations to a
graph element that has not been discovered. For example, we
must create an edge before we can resolve the target block
candidate of this edge.
Non-returning Function Dependency. The correctness of

OCFEC for creating call fall-through edges depends on the op-
erations applied to the callee functions to determine whether
the callee can return or not. If OCFEC is applied when the
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callee cannot return, an erroneous call fall-through edge
would be added.

Operations that satisfy either type of the above depen-
dency must be applied in order. We classify operations that
are not constrained by any dependency into three categories:

Commutative operations: Operations OBER and ODEC
commute with themselves and with each other, allowing us
to choose an order convenient for processing. To establish
this, we discuss the following three cases:
(1) Given two candidate blocks [a] and [b] where a < b,

OBER (OBER (G, [a]), [b]) = OBER (OBER (G, [b]), [a]). First, if
there is a control flow instruction ending at address c where
a < c < b, candidate block [a] will end before c while can-
didate block [b] will end after c . These two operations will
act on non-overlapping address ranges and be independent,
which gives us commutativity. Second, if a control flow in-
struction ends at c where a < b < c and c is first control flow
instruction following b, we have

OBER (OBER (G, [a]), [b])

= OBER (G ∪ {[a, c)}, [b]) (Linear parsing)
= G ∪ {[a,b), [b, c)} (Block splitting)
= OBER (G ∪ {[b, c)}, [a]) (Early block ending)
= OBER (OBER (G, [b]), [a]). (Linear parsing)

Thus we also have commutativity in this case.
(2) Given two blocks a and b, ODEC (ODEC (G,a),b) =

ODEC (ODEC (G,b),a). This is because ODEC (G,a) only con-
siders the terminating control flow instructions within the
block a.

(3) Given a candidate block [t] and a block [s, e), we have
OBER (ODEC (G, [s, e)), [t]) = ODEC (OBER (G, [t]), [s, e)). We
observe thatODEC (G, [s, e)) depends on only the terminating
control flow instruction ending at e and will generate only
new candidate blocks while OBER (G, [t]) does not depend
on candidate blocks. Therefore these two operations are
independent and thus commutative.
The operation OER also commutes with itself, allowing

us to choose an order convenient for processing. The graph
OER (OER (G, e1), e2) = OER (OER (G, e2), e1) will contain no
blocks reachable only through e1 and e2, which gives us the
commutativity property.

Monotonic ordering property: While OI EC does not
commute trivially with any other operation, we can still
establish a weaker property. Let OI EC (G,a) be an indirect
edge creation operation and Ox (G,b) be an OBER or ODEC
operation. IfOx (G,b) contains an additional edge allowing b
to reach a, a subsequentOI EC (G,a) operation may add more
edges than one applied prior due to the additional possible
code paths. Since OI EC considers code paths separately, it
will never elide edges due to additional control flow, thus
we have the propertyOx (OI EC (G,a),b) ≼ OI EC (Ox (G,b),a).
As our goal is to achieve a maximal CFG, this allows us to
reorder OI EC after any OBER and ODEC operations without
decreasing the final result.

1 A: B:
2 ... ...
3 leaveq mov %rsi, 1
4 jmp 0x400 jmp 0x400

Listing 1. An example that leads to inconsistent results with the
tail call heuristics used by Dyninst.

Non-reorderable operations: Unlike the others, the op-
erations OCFEC and OF EI do not always commute, nor do
they satisfy the ordering property above in all cases. Both
of these operations use implementation-specific analyses:
non-returning function analysis forOCFEC and tail call iden-
tification heuristics for OF EI , both of which at times require
inspection of large portions of the graph.

4.2 Serial Algorithm Assessment
We compare the serial algorithms implemented by angr [28],
Dyninst [20], and rev.ng [10] using the notation and opera-
tions defined above.
First, Dyninst and angr’s CFG construction can be char-

acterized with an increasing expression: G0 ≼ G1 ≼ G2 ≼
· · · ≼ Gn . While this increasing construction strategy does
not guarantee best performance, it has the advantage of not
performing redundant work of adding and then removing
graph elements.

In contrast, rev.ng has an additional step to clean candidate
function entries after this increasing phase. This cleaning
step can address issues caused by operations that do not com-
mute such as tail call identification. Listing 1 is an example
where Dyninst will give inconsistent results depending on
analysis order. In this example, functions A and B branch
to the same address. If A is analyzed first, because leaveq
tears down the stack frame, Dyninst will treat the branch in
A as a tail call and create a new function at the branch tar-
get; later when Dyninst analyzes B, we find that B branches
to a known function entry, so the branch in B is also a tail
call. In this case, function B will not include the block at
0x400. If B is analyzed first, because there is no stack frame
tear down before the branch in B, Dyninst will not treat the
branch as a tail call, and the block at 0x400 will be part of B.
Therefore, the function boundary of B is determined by the
order of analysis. Without other context, it is equally valid
to conclude either “A and B both tail call to 0x400” or “A
and B share block at 0x400”. The cleaning step can ensure a
consistent answer.
Second, jump table analysis implemented in tools does

not necessarily satisfy the monotonicity property we de-
fined for OI EC . The root cause is imprecise jump table anal-
ysis where jump table targets can be over-approximated.
Suppose we have OI EC (G,b1) and OI EC (G,b2). Due to im-
precise jump table analysis, OI EC (G,b1) generates an over-
approximated set of jump targets, resulting in invalid outgo-
ing edges. Such additional but confusing control flow may
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cause OI EC (G,b2) to fail, leading to an empty set of targets.
However, if OI EC (G,b2) is performed first, we may get the
correct non-empty set of jump targets for b2. We have ob-
served this problem in Dyninst’s jump table analysis. While
rev.ng and angr both provide detailed descriptions about
how they resolve jump tables, neither is able to guarantee
no over-approximation of jump targets.

4.3 Challenges For Parallelism
We identify three issues that must be addressed to achieve
effective parallel analysis.
First, commutative operations still need careful synchro-

nization. Suppose we have two blocks a , b containing
direct control flow to a target address t and consider the case
where we performODEC (G,a) andODEC (G,b) concurrently.
These two operations commute trivially adding the edges
(a → [t]) and (b → [t]) respectively, however only the
operation performed first will create the candidate block [t],
which must be referenced by the second to create its edge.
This is trivial to maintain for serial algorithms, but synchro-
nization is necessary to maintain this uniqueness property
in a parallel setting.
Second, non-returning function dependencies between

operations can lead to ineffective parallelism. In a call chain
where F1 calls F2, F2 calls F3, · · · , and Fn−1 calls Fn , anOCFEC
operation in F1 may need to wait for operations in F2 to
complete, which may need to wait for operations in F3, and
so on. This effect causes undesirable serialization during
analysis.
Third, the monotonic ordering property for operation

OI EC (G,a) indicates that we might be able to find more con-
trol flow targets if it is reordered after other edge creation
operations (namely OBER and ODEC ). However, deferring
OI EC (G,a) can exacerbate the issue of non-returning func-
tion dependencies, as this will delay the discovery of returns
that are only reachable through the indirect jump.

5 Parallel CFG Construction
We designed a new parallel algorithm to produce consistent
results for tail call identification and jump table target res-
olution, support efficient concurrent CFG operations, and
carefully order CFG operations for better performance. We
define five invariants to support concurrent CFG operations
(Section 5.1) and divide the algorithm into two stages:

Control flow expanding: We perform control flow traversal
for initialized functions in parallel, during which we may
discover more functions and repeatedly apply control flow
traversal until there are no more functions to analyze (Sec-
tion 5.2).

Control flow finalization: This stage includes cleaning con-
trol flow edges and blocks created by over-approximated
jump tables, cleaning inconsistent tail call identification re-
sults, and determining which basic blocks belong to which

0x4 0xA 0xD

T1 T2 T3
T4

T5

j*

(a) T1 and T2 branch to two different addresses. T3, T4, and
T5 branch to the same target. j* represents a conditional or
unconditional control flow transfer.

T1

B1

0x4

T2

B2

T4

B3

0xA 0xD

(b) T1, T2, and T4 create new basic blocks. T2 first reaches the
block end and creates new control flow edges. T1 then reaches
the block end and needs to split blocks.

B1

0x4

B2

0xA

T4

B3

0xD

(c) T1 finishes splitting blocks. T4 reaches the block end and
needs to split blocks.

B1

0x4

B2

0xA

B3

0xD

(d) T4 finished splitting blocks, which involves moving edges.

Figure 1. An example of five threads working with a com-
mon area of code. Solid edges represent the progress of
threads. Bold solid edges represent actions to take place.
Dashed edges represent control flow edges in the CFG.

function by traversing intra-procedural edges from function
entry blocks (Section 5.3).

5.1 Control Flow Traversal Invariants
We use Figure 1 to illustrate how our five invariants ensure
that threads correctly perform concurrent CFG operations.

Invariant 1: Block Creation. There is at most one basic
block starting at any given address. This invariant means
that if threads branch to the same target concurrently, one
and only one thread should create the block and make the
block visible to other threads. This invariant applies to di-
rect edge creation operations, call fall-through edge creation
operations, and indirect edge creation operations.
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In Figure 1a, threads T3, T4 and T5 branch to the same
address. According to this invariant, only one thread should
create a new basic block. As shown in Figure 1b,T4 creates a
new basic block B3. T3 and T5 do not create any new basic
blocks and leave the common code area to work with other
code. Independently,T1 creates basic block B1 andT2 creates
basic block B2.
Maintaining this invariant requires an efficient concur-

rent data structure that synchronizes threads branching to
the same target, while allowing threads branching to differ-
ent targets to proceed independently. We use the concur-
rent hash map provided by Intel’s Threaded Building Blocks
library [13] to fulfill these two requirements, which pro-
vides entry-level reader-writer locks. The insert method
of concurrent_hash_map ensures that only one concurrent
insertion with the same key will succeed. Therefore, we can
use the return value of insert to determine whether the
current thread has successfully created a block and should
continue analysis of the block. Threads that see a false re-
turn value know that another thread has created the block
and can move on to other work.

Invariant 2: Block End. There is at most one basic block
ending at any given address. This invariant applies to block
end resolution operations. In Figure 1b, thread T1, T2 and T4
will independently parse their blocks until they reach the
indirect jump instruction. Based on this invariant, only one
thread should register the block end address, which is T2 in
this example.

A naïve implementaion of this invariant is to let a thread
check whether a block exists at its current working address.
If there exists one, the working thread can end its block. How-
ever, this implementation means that there will be a block
start lookup after decoding each instruction. This would cre-
ate a performance hotspot on the concurrent data structure
used for Invariant 1.
We defer this check until the working thread reaches a

control flow instruction. In this way, we reduce the frequency
of global concurrent data structure lookups from once per
instruction to once per control flow instruction. This design
causes redundant instruction decoding between overlapping
blocks analyzed by different threads. However, while func-
tions sharing code is commonly seen in binaries, most of the
code blocks in a binary are still not shared. This means that
most of the time, a thread is going to branch into a block that
was created by itself, not created by other threads. There-
fore, we implemented a thread local cache that maintains
addresses that have been analyzed by the thread and use this
cache to reduce redundant decoding.

Invariant 3: Edge Creation. The thread that registers
a block’s end is responsible for creating out-going control
flow edges from that block. This invariant applies to all edge
creation operations and ensures that no redundant control
flow edges are created and jump table analysis for a particu-
lar indirect jump is always performed by one thread. This

also reduces unnecessary block start lookups by avoiding
redundant edges. As shown in Figure 1b, because thread
T2 registers the block end, T2 continues to perform control
flow analysis to resolve the indirect jump targets and create
control flow edges. T2 then leaves the common code and
continues to work with other code.

Invariant 4: Block Split. The threads that reach a block
end but do not register the block end will need to split
blocks. This invariant applies to the block splitting case in
block end resolution operations. Suppose we have block
B1[x1,y),B2[x2,y), . . . Bn[xn ,y) created by n threads, where
x1 < x2 < . . . < xn < y. The results of block split should be
B1[x1,x2),B2[x2,x3), . . . ,Bn[xn ,y), with a fall-through edge
between each pair of adjacent basic blocks. It is inefficient
to wait for all relevant blocks before performing splitting, so
we present the following eager block split algorithm.

Based on Invariant 2 (block end), only one block Bi [xi ,y)
will register its end at y. When some other block Bj [x j ,y)
reachesy, the working thread can look up Bi as the registered
block. Depending on the relationship between xi and x j , we
have two cases:

• If xi > x j , Bj is split into [x j , xi ) while Bi is untouched.
We then register Bj at block end address xi , which will
trigger a new iteration of block split when another
block has already registered block end at xi . As shown
in Figure 1c, T1 splits blocks B1, registers B1 ending at
0xA and then leaves the common code.

• If xi < x j , Bi is split into [xi , x j ) while Bj is untouched.
We then replace Bi with Bj for block end address y,
register Bi for block end address x j , and move out-
going edges from Bi to Bj . Similar to the first case,
registering Bi at x j may recursively require another
block split. As shown in Figure 1d, T4 splits B2 and
moves control flow edges from B2 to B3.

For both cases, each iteration of the block split algorithm
ends with a smaller block end address. Therefore, our block
split algorithm is guaranteed to converge.
Listing 2 shows how we implement Invariant 2 (block

end), Invariant 3 (edge creation), and Invariant 4 (block split).
concurrent_hash_map can be instantiated with any main-
stream implementation of concurrent hash tables, including
Intel TBB’s concurrent hash map, and provides the follow-
ing two properties [19]. First, concurrent_hash_map should
guarantee uniqueness of keys, which is necessary for Invari-
ant 2. Second, concurrent calls to concurrent_hash_map’s
insertmethod with the same key should have one and only
one call returning true; we use this property for Invariant 3
and 4.
Structure MapEntry contains a pointer to a Block and

a Mutex. Block has several auxiliary methods: start() re-
turns its starting address; end() returns its ending address;
setEnd() updates its ending; appendOutEdge(b2) creates a
new outgoing edges to b2. Mutex supports lock and unlock
methods for mutual exclusion and serves as an entry level
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1 struct MapEntry {
2 Block* b;
3 Mutex* m;
4 };
5 concurrent_hash_map<Address, MapEntry> blockEnds;
6 EdgeSet registerBlockEnd(Block* b) {
7 bool isNewEntry = false;
8 MapEntry e;
9 // e references the newly inserted or the existing entry
10 std::tie(isNewEntry, e)
11 = blockEnds.insert(b->end(), b, new Mutex());
12 e.m->lock();
13 if(newEntry) {
14 // Block end registered, create outgoing edges for b
15 EdgeSet edges = createEdgesFor(b);
16 e.m->unlock();
17 return edges;
18 } else {
19 // Block end not registered, split blocks
20 Block* b2 = e.b;
21 if(b->start() < b2->start()) {
22 b->setEnd(b2->start());
23 b->appendOutEdge(b2);
24 e.m->unlock();
25 // b's ending address has changed and re-register
26 registerBlockEnd(b);
27 } else {
28 e.b = b;
29 b2->setEnd(b->start());
30 // Move b2's out edges to b
31 MoveOutEdges(b2, b);
32 b2->appendOutEdge(b);
33 e.m->unlock();
34 // b2's ending address has changed and re-register
35 registerBlockEnd(b2);
36 }
37 return ∅;
38 }
39 }

Listing 2. Implementation of Invariant 2 (block end), Invari-
ant 3 (edge creation), and Invariant 4 (block split).

lock for the concurrent hash map. Some implementation of
concurrent hash tables provides an entry-level lock natively.
For example, Intel TBB’s concurrent hash map exposes entry-
level reader-writer locks via an “accessor” semantic. We can
obtain an “accessor” for the existing entry in the table (insert-
ing one if requested and not already present). The accessor
acts as a read or write lock on the entry, and other threads
that are trying to obtain a conflicting accessor will wait until
the holding thread releases its own accessor. In such case,
a Mutex in MapEntry is not necessary and MapEntry can be
simplified to be just a Block pointer.

Lines 14 to 17 create new edges (Invariant 3) and only the
thread who inserted the entry will enter this case. Routine
createEdgesFor creates control flow edges according to the
encountered control flow instruction. Lines 19 to 37 show
an implementation of our block split algorithm (Invariant
4). The recursion in line 26 and 35 is guaranteed to finish as
each recursion will work with a basic block having a decreas-
ing ending address. Entry-level locks ensure the addition of
edges in line 15 is mutually exclusive with the movement of
edges on line 31, allowing us to use simpler serial structures
to represent the outgoing edges for each block. While it may
be possible to use finer grained synchronization here, our

1 void ParallelCFT(q) {
2 delayed_func = new HashMap();
3 while(!q.empty()) {
4 finish { LaunchTasks(q, delayed_func); }
5 MarkNonReturning(q, delayed_func);
6 }
7 }
8 void LaunchTasks(q, delayed_func) {
9 while(!q.empty()) {
10 func = q.pop();
11 async { // execute the following code block as a task
12 newq = processAFunc(func, delayed_func);
13 LaunchTasks(newq, delayed_func);
14 }
15 }
16 }
17 Queue processAFunc(f, delayed_func) {
18 newq = new Queue()
19 while(f.hasMoreBlocks()) {
20 b = f.nextBlock();
21 b->setEnd(findNextControlFlow(b));
22 edges = registerBlockEnd(b);
23 for(e : edges) {
24 switch(e.type()) {
25 case "call": processCall(f, newq, delayed_func); break;
26 case "ret": processReturn(f, newq, delayed_func); break;
27 default: createNewBasicBlock(f); break;
28 }
29 }
30 }
31 return newq;
32 }

Listing 3. The algorithm for parallel control flow traversal.

performance profiling has not shown this mutual exclusion
to be a performance bottleneck.

Invariant 5: Function Creation. There is at most one
function starting at any given address. This invariant ap-
plies to function entry identification operations and has sim-
ilar properties and requirements to Invariant 1 for creating
blocks, can be implemented in a similar way.

These five invariants ensure that commutative operations
can be safely reordered and performed concurrently, and the
relative speed of threads will not impact the final results.

5.2 Parallel Control Flow Traversal
Listing 3 presents the algorithm for parallel control flow

traversal, which is based on an async-finish model of task
parallelism [12] and implemented with OpenMP. The func-
tion ParallelCFT takes q as input, which is initialized with
function starting addresses found in the symbol table. We
launch tasks in parallel at line 4with a finish code block and
the master thread will block until the call to LaunchTasks
returns.

delayed_func is a concurrent_hash_map that maintains
non-returning function dependencies. When we reach a call
site in function f that callsд, ifд’s non-returning status is un-
known, we add an entry to delayed_func to note that f has
deferred parsing work that waits for д. When we determine
the return status of f (either returning or non-returning), we
look up delayed_func to mark any functions that have de-
ferred work due to f ready for processing. At line 5, after all
tasks are finished, delayed_func can be non-empty. In this
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case, functions in delayed_func form cyclic dependencies.
We mark all functions in delayed_func as non-returning
and start a new iteration of traversal.
Routine LaunchTasks launches tasks in parallel. At line

11, async creates a new child task to execute the succeeding
code block while the parent task proceeds to iterate over
task queue q. The child task process a function, generates
a new task queue that includes more functions to process,
and launch tasks to process the new queue. This parallel
task scheme has the advantage of making newly discovered
functions immediately available for processing, and avoid
maintaining a global task queue, which would require syn-
chronization across all threads.

Routine processAFunc processes a function f . The traver-
sal in f is repeated until there are no more unanalyzed basic
blocks (Line 19). For each block b, findNextControlFlow
(Line 21) decodes instructions until a control flow transfer
instruction is encountered and returns the end address of
the encountered control flow instruction. A thread-safe in-
struction decoder is necessary for this step.

Routine registerBlockEnd was shown in Listing 2. Only
the thread that successfully registers the block end will see
a non-empty set of control flow edges returned, following
Invariant 3 (edge creation). All other threads reaching the
same block end will see an empty set of edges and will follow
Invariant 4 (block split) to split the blocks.

The thread that creates the control flow edges will proceed
to traverse the edges (Line 23 - 28). If we encounter a function
call to д, routine processCall may need to create a new
function, following Invariant 5 (function creation), and add
the new function to the new task queue. We then acquire
an accessor for д in delayed_func. If д’s return status is
unknown, we add “f waiting for д” to delayed_func.
If we encounter a return edge, routine processReturn

acquires an accessor for f in delayed_func, sets f as re-
turning, adds all functions that are waiting for f in the new
task queue, and removes f from delayed_func. We then
also add f to the new task queue and terminate the cur-
rent task. This strategy enables us to immediately launch
new tasks to process the newly available functions, and is
effective for addressing non-returning function dependen-
cies because large functions often contain multiple return
instructions.
If we encounter other types of edges, such as indirect,

direct or conditional branches, we create new basic blocks
based on invariant 1 (block creation) at line 27. Finally, we
return newly discovered function entries to initialize new
control flow traversal (Line 31).

Jump table analysis.We address two issues raised in Sec-
tion 4 about jump table analysis. First, jump table analysis
(OI EC ) in Dyninst does not satisfy the monotonic ordering
property. We identify that when Dyninst encounters instruc-
tions or path conditions that it cannot analyze, Dyninst will
fail to analyze the jump table and generate an empty set of

control flow targets. This issue can be addressed by taking
the union of the targets discovered along different paths,
essentially ignoring instructions or path conditions that fail
analysis. In this way, jump table targets identified along
valid control flow paths can still be propagated to the in-
direct jump, and the analysis can generate non-empty set
of control flow targets. While this strategy makes the jump
table analysis in Dyninst satisfies the monotonic ordering
property, it can over-approximate jump table sizes and lead
to bogus control flow edges. We will introduce a cleaning
strategy in the CFG finalization stage to remove bogus con-
trol flow edges.
Second, the monotonic ordering property specifies that

we can get a larger graph if we delay jump table analysis
as much as possible, but this might delay the finding of re-
turn instructions and hurt parallelism due to non-returning
function dependencies. We balance these two factors by or-
dering jump table analysis after the analysis of direct control
flow edges in this function, but before call fall-through edges
when the callee does not have a known return status. In
addition, we repeat the analysis of a jump table after more
control flow paths are created within the same function. This
fixed-point analysis of jump tables allows us to find most of
the targets early in the analysis and gradually converge to a
complete set of targets.

5.3 CFG Finalization
The goal of CFG finalization is to remove wrong CFG el-
ements and determine function boundaries. No new CFG
elements will be added. CFG finalization includes jump table
finalization and tail call finalization. Both steps are done with
function level parallelism.
The first step is jump table finalization, where we re-

move wrong indirect control flow edges. We find that over-
approximation of jump targets is caused primarily by over-
approximation of jump table sizes. We can mitigate this prob-
lem by leveraging an observation that compilers do not emit
overlapping jump tables [33]. Therefore, if the analysis of a
jump table overflows into another jump table, we can detect
over-approximation and apply edge removal operationsOER
to remove wrong edges and cascading dangling blocks. We
make two observations about this strategy. First, we have
established in Section 4 that edge removal operations commu-
tate. Therefore, it is safe to perform this mitigation strategy
in parallel. Second, this strategy cannot be used during the
parallel control flow traversal step. This is because when we
analyze a jump table, we do not know the exact locations of
all jump tables in the binary. For this reason, we delay this
mitigation of over-approximation until the CFG finalization
phase.
We then perform tail call finalization, where we address

wrong tail calls edges and determine function boundaries.
We handle this with an iterative parallel control flow graph
search. Starting from function entries, we add blocks to the
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boundary of a function by traversing intra-procedural edges.
After getting the temporary function boundaries, we use
three rules in order to correct tail call results. First, if a branch
is marked as not a tail call, but the edge target has a CALL
incoming edge, we correct this edge to be a tail call. Second,
if a branch is marked as a tail call, but the branch target is
within the current function boundary, we correct this edge
to be not a tail call. Third, if a branch is currently a tail call,
but the edge target has only the current edge as incoming
edges, we treat this as not a tail call. This is generally caused
by outlined code blocks. After correcting tail calls, we re-
perform the function boundary graph search and the tail call
correction procedure. We flip the determination of tail call at
most once for each edge, ensuring convergence. Finally, we
remove functions that do not have incoming inter-procedural
edges.

6 Evaluation
We evaluate the correctness of our parallel CFG construction
algorithm and implementation and the performance of our
work using hpcstruct from the HPCToolkit performance
analysis tools [2].

6.1 Correctness
Our data set contains 113 binaries obtained by compiling
the coreutils and tar projects. These binaries are compiled
with GCC 9.3.0 for x86-64, with link-time optimization dis-
abled and other optimizations enabled as specified by the
package. Since it is difficult to obtain accurate ground truth
for a binary’s CFG [10, 20, 28], we approximate the ground
truth by compiling these binaries with debug information
and injected the flag -fdump-rtl-dfinish to generate RTL
intermediates. The debug information and RTL are used only
for generating the ground truth.
The ground truth of this data set consists of three parts.

First, we represent the boundaries of each function with a set
of address ranges, essentially projecting the CFG of a func-
tion to the virtual address space. The DWARF .debug_info
section encodes function ranges. In particular, it supports
multiple non-contiguous ranges for one function and sup-
ports one range corresponding to multiple functions. There-
fore, we can evaluate the handling of functions sharing code
and non-contiguous functions. Second, we include the size
of a jump table as part of the ground truth, which can be
extracted by scanning the RTL files. Unfortunately, we can-
not derive jump table locations or the actual targets from
the RTL files. As existing jump table analysis has focused
on bounding the size of jump tables, we believe jump table
sizes provide significant evaluation value. Third, RTL en-
codes the ground truth for calls to non-returning functions,
where a non-returning call has REG_NORETURN as one of its
arguments.

We identified four distinct differences between our imple-
mentation and the ground truth: (1) Failing to identify non-
returning calls to ‘error’. ‘error’ is non-returning when the
first argument is non-zero, but returning when the first argu-
ment is zero. Existing non-returning function analysis per-
forms name matches for external functions. This approach
does not work for ‘error’. (2) For a function foo, the com-
piler may emit another function symbol (“foo.cold”) for
outlined cold blocks from foo. In our results, foo does not
include addresses from foo.cold. However, the debugging
information lists the address ranges of “foo.cold” as part
of foo. (3) Failing to resolve a jump table whose calculation
uses the stack to store intermediate values. (4) An extra indi-
rect jump target caused by failing to identify a non-returning
call to ‘error’, which causes a wrong control flow edge and
jump table approximation.
In all cases above, the differences are caused by either

incorrectness in the individual CFG operations (OCFEG and
OI EC ) or mismatches between the symbol table and DWARF
information. In other words, the errors are not caused incor-
rect parallelism and can be fixed by improving the imple-
mentations of OCFEG and OI EC .

6.2 HPCToolkit’s hpcstruct
HPCToolkit is an integrated suite of tools for measurement
and analysis of application performance on computers rang-
ing from desktops to supercomputers. To aid in the attri-
bution of performance measurements to an application’s
source code, the hpcstruct utility in HPCToolkit relates
each machine instruction address to the static calling con-
text in which it occurs. In particular, hpcstruct is able to
relate instructions to their original function or loop construct
by inspection of the binary’s final CFG, and to an inlined
function or template and source lines if DWARF debugging
information is available. hpcstruct is built upon Dyninst
and directly benefits from the new parallel CFG construction
algorithms described in this paper.
We use four large binaries to illustrate the effectiveness

of our parallelization for speeding up performance analysis,
including two binaries from Lawrence Livermore National
Laboratory (Ares and Kull), one large binary from Argonne
National Laboratory (Camellia), and one shared library from
TensorFlow [1]. Statistics about these binaries are given in
Table 1. Experiments with Ares and Kull were done on a
machine with 16 hardware threads at LLNL. Experiments
with Camellia and TensorFlow were done on a system with
two 18-core Xeon E5-2695v4 processors.
The results are presented in Table 2 and in Figure 2. The

execution of hpcstruct consists of (1) parsing DWARF, (2)
CFG construction, (3) constructing loops, (4) CFG traversal
to query program structure, and additional serial stages un-
related to binary analysis. “Prior” consists of parallel (1), (3),
(4) with serial (2). “Current” uses parallel implementations
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Table 1. Statistics of the large binaries.

Size (MiB)

Binary Total .text Arch. Endian (Width)

Ares 363.40 77.01 Power Little (64)
Kull 1913.50 149.13 x86 Little (64)

Camellia 299.08 40.81 Power Big (32)
TensorFlow 7844.81 112.21 x86 Little (64)

Table 2. Performance results, averages of 10 runs. Times for
Prior and Current hpcstruct represent performance before
and after applying our parallel CFG construction, isolated in
CFG. %SCFG lists the percentage of Prior spent in serial CFG
construction.

Binary Time Taken in hpcstruct (s)

Cores Prior %SCFG CFG Current

Ares
1 237.97 42.68% 101.57 237.97 ± 3.79
16 120.80 84.08% 11.21 30.44 ± 0.28

Speedup 1.97× 9.06× 7.82×

Kull1
1 690.86 25.59% 176.79 690.86
16 269.68 65.56% 19.66 112.55

Speedup 2.56× 8.99× 6.14×

Camellia [25]
1 118.39 38.93% 46.10 118.39 ± 2.24
16 60.93 75.66% 5.38 20.21 ± 0.17

Speedup 1.94× 8.57× 5.86×

TensorFlow [1]
1 1252.88 8.89% 112.55 1252.88 ± 19.70
16 263.81 42.66% 9.56 160.82 ± 3.08

Speedup 4.75× 11.77× 7.79×
32 253.18 44.45% 5.49 146.12 ± 1.70
64 262.70 42.84% 4.46 154.61 ± 2.86

Speedup 4.77× 25.22× 8.10×

for all four stages. The “CFG” column is the time taken by
the parallel (2) in “Current” hpcstruct.

The “Prior” column shows that a serial CFG construction
significantly limits the parallelization of hpcstruct, achiev-
ing a speedup of 2× to 5× with 16 hardware threads; using
more than 16 hardware threads hardly improve performance.
The “%SCFG” column shows that serial CFG construction
is clearly a bottleneck, taking about 40% to 80% of the total
runtime when hpcstruct runs in parallel.

The “Current” column shows that hpcstruct has an end-
to-end speedup of 6× to 8×, which is much higher compared
to hpcstruct with serial CFG construction. We achieve a
speedup of 9× to 12× for parallel constructing CFGs with 16
hardware threads, and up to 25× with 64 hardware threads,
showing that our parallel CFG construction scales well. After
our changes hpcstruct is now limited by other serial phases
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Figure 2. Average speedup (geometric mean) of hpcstruct
on the four binaries, as described in Section 6.2.

and the total runtime of hpcstruct has been significantly
reduced.

7 Discussion
Comparing with other tools:We ran both angr [28] and
rev.ng [10] on the 7.7GiB shared library from TensorFlow.
Neither tool finished CFG construction within 1 hour. We
believe their software architecture (angr is written in python)
and binary analysis approach (lifting binaries to IR) are not
suitable for analyzing large binaries.

Benefiting other applications:CFG construction is also
used by other binary analysis applications. For example, soft-
ware vulnerability searching calculates binary code similar-
ity [6, 9] to match known vulnerable code.

Compiler assisted analysis:Ourwork opportunistically
uses information from the compiler (such as symbol tables
and DWARF). However, this is not a complete solution and
we cannot rely on sufficient or even accurate compiler sup-
port. Surprisingly often for even the most widely-used com-
pilers, the compiler-provided information is incomplete or
inaccurate [17]. For performance analysis, software develop-
ers often use the compiler and optimization flags that lead
to greatest performance, which often leads to less accurate
debugging information.

Source code CFG construction: The challenges of bi-
nary code CFG construction are largely distinct from those
of source code CFG construction. Binary code functions can
share code, which is the main reason that we must derive
operation properties to guide our design invariants to sup-
port analysis of multiple functions in a binary in parallel. In

1Results for Kull are based on one run for each thread count. We have
limited access to the binary and cannot repeat the experiment.
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contrast, source code functions cannot overlap unless func-
tions are nested. In this case, CFG construction for source
code does not require rigorous synchronization.

Task load balancing: We apply a heuristic that begins
analysis of large functions first. This minimizes the potential
for extreme imbalance that would occur if a thread began
analysis of a large function when analysis of all other func-
tionswas nearly complete.With our approach, the analysis of
large functions by one or more threads is typically balanced
by analysis of small functions by others. We acknowledge
that if there is a large function whose size is larger than
all small functions combined, our approach will suffer from
load imbalance. In practice, we rarely observe such extreme
imbalance. Avoiding imbalances caused by a small number
of extremely large functions would require intra-function
parallelism.

Function Pointers: We do not handle function pointers
in this work and only track through direct calls in our inter-
procedural analysis. We handle indirect calls conservatively,
assuming theywill return. Twomain approaches for function
pointer analysis are signature matching based on type infor-
mation [18] and point-to analysis [34]. These approaches are
mostly studied with source code. Extending them to binary
code analysis is an interesting research direction for future
work.

8 Conclusion
With the increasing size of software, it is critical to add
multithreaded parallelism to speed up binary analysis. Our
work centers on a theoretical abstraction that expresses CFG
construction as applications of individual CFG operations.
We derived operation dependencies, commutativity, and
monotonic ordering properties, which guided us towards
a new parallel CFG construction algorithm. We evaluated
our parallel binary analysis with a performance analysis tool
hpcstruct, achieving as much as 25× speedup for parallel
CFG construction and 8× overall for hpcstruct using 64
hardware threads, significantly cutting the wait times for
their users and developers.
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A Artifact Appendix
A.1 Abstract
The artifact contains code and data needed to reproduce the
correctness and performance experiments used in Section 6
of the paper.

The correctness experiments compare the output from our
analysis with the data extracted from DWARF debugging
information. To our best effort, the output from our analysis
is normalized to match the output from DWARF. Still, the
comparison requires manual analysis and reproducing the
analysis results require basic understanding of x86 assembly.

The performance experiments run our analysis with large
binaries using various numbers of threads to compute the
speedup of our analysis. In the paper, we used four large
binaries in the experiments. We provide two of the four
binaries in this artifact. Running with Camellia and Tensor-
Flow take around 23GB and 75GB of memory respectively.
We did the experiments on a machine with 128GB memory
and 72 hardware threads. Our artifact also supports running
performance experiments with your own binaries.
Below we provide a brief description for the artifact. We

provide a README file that includes detailed steps for arti-
fact evaluation, which is available in the tar ball downloaded
at https://zenodo.org/record/4295514#.X8LXuqpKhTY.

A.2 Getting Started Guide
The artifact is available as a docker container. You can use
the pre-built image:

docker run -it registry.gitlab.com/blue42u/ppopp-docker

You can also build the docker image yourself, which will
take about 2 hours for installing necessary software depen-
dencies:

git clone https://gitlab.com/blue42u/ppopp-docker

cd ppopp-docker

docker build .

A.3 Reproducing the correctness results
In the container, directory /correctness contains all the
files needed for the correctness experiments. The output
for this experiment is already computed in the process of
building the docker image. Please refer to Section C in the
README file for more details about how we manually com-
pare the difference between our analysis output and ground
truth derived from DWARF debugging information.

A.4 Reproducing the performance results
Directory /performance contains all the files needed for
this experiment. We provide Camellia and TensorFlow as
two sample input binaries. To reproduce the results shown
in Table 2, you can run:

cd /performance; make THREADS=’16 64’ REPS=10

The THREADS argument means that to run the experiments
with 16 and 64 threads (single thread is always included

for computing speed up). The REPS argument specifies the
number of iterations for running with each binary. The final
results include per-binary results and their concatenation
in results.txt (which is the default make target if none is
specified).

Running with Camellia and TensorFlow take around 23GB
and 75GB ofmemory respectively.We did the experiments on
amachinewith 128GBmemory and 72 hardware threads. The
whole experiments may take a couple of hours depending on
the computing power of your machine. You can reduce the
number of repetition to reduce the total runtime. When REPS
is set to 1, the output will include "nan" in the last column
because we cannot calculate the variance with just 1 run.
Run make in /performance will trigger analyzing all bi-

naries in the /performance/input directory. By default,
/performance/input has the camellia and tensorflow bi-
naries. You can exclude binaries from the experiment by
moving binaries to other places or include binaries to the
experiment by adding binaries to the directory.
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