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Abstract—Understanding how to develop efficient high-order
stencils for Graphics Processing Units (GPUs) is a topic of
great interest for many application domains. High-performance
stencils on GPUs must be tailored for data parallel computation
and to use the memory hierarchy efficiently. For data-intensive
high-order stencils, the key to high performance on GPUs
is reducing the shared memory footprint to enable a large
thread block for hiding memory latency. In this paper, we use
the semi-stencil algorithm to do so. On the NVIDIA A100, a
CUDA implementation of the semi-stencil algorithm along with
other optimizations achieves a 2.13× speedup compared to an
OpenACC reference implementation and 8.7% faster than the
best conventional stencil computing out of shared memory. We
evaluate the performance of our implementations on the latest
NVIDIA GPUs.

Index Terms—stencil computation, high-order, wave equation,
HPC, GPU, semi-stencil

I. INTRODUCTION

Accelerating high-order stencils on Graphics Processing

Units (GPUs) is important for many application domains.

However, implementing them efficiently is challenging be-

cause of the range of implementation choices, resource con-

straints, and varying characteristics of different GPUs.

Prior work on high-order GPU stencils by Sai et al. [1]

studied 25-pt star stencils used to solve the acoustic wave

equation on isotropic media (acoustic iso). In this pa-

per, we study a compact-in-space [2] 73-pt stencil (shown

below) used to solve the acoustic wave equation on

tilted transversely isotropic

media (acoustic TTI). Sai

et al.’s acoustic iso imple-

mentation uses five full-

size 3D data arrays; our

acoustic TTI implementa-

tion needs 13. As shown

later in Section V, applying

the 73-pt stencil to values

in GPU shared-memory is

much faster than computing with values from global memory.

However, for such data-intensive stencils, shared-memory us-

age limits the size of GPU thread blocks, which prevents from

hiding data access latency.

In this work, we explore strategies for efficiently applying

the 73-pt acoustic TTI stencil. The principal focus of this

work is evaluating GPU implementations of the semi-stencil

algorithm [3]. The semi-stencil algorithm reduces the shared

memory footprint of a thread block to roughly half of that

needed by conventional stencil implementations. The smaller

shared memory footprint using the semi-stencil algorithm

enables us to employ optimizations unavailable to conventional

stencil implementations because of resource limitations. We

compare our implementations of the acoustic TTI stencil using

the semi-stencil algorithm with other approaches.

This paper makes the following contributions:

• it describes and evaluates strategies for high-performance

implementation of the acoustic TTI stencil on GPUs;

• it explores the benefits of the semi-stencil algorithm for

complex high-order stencils;

• it compares performance on NVIDIA A100 and V100

GPUs; and

• it quantitatively assesses our kernel implementations w.r.t.

execution time, Roofline, memory footprint, code com-

plexity, and performance portability.

The layout of the paper is as follows: Section II pro-

vides background about stencil computations, complex wave

equation, GPU performance issues, 2.5D streaming, the semi-

stencil approach, and other stencil optimizations. Section III

describes our high-level approach and details semi-stencil

implementation and its variants. Section IV describes opti-

mizations in performance tuning. Section V describes our

evaluation methodology, experimental results, and findings.

Section VI summarizes our conclusions.

II. BACKGROUND AND RELATED WORK

A. Stencil Computations

Stencil computations are used to update data elements,

called points (usually a differential operator), on a data grid.

A new data value for a point is computed as a weighted sum

of products between values of a set of neighboring points and

scaling coefficients. The set of points used in the calculation

defines a stencil. The maximum distance from the center point

along an axis to a neighboring point in the stencil defines the

order R of the stencil. The halo size along each axis direction is

defined by the maximum distance from the center to a neighbor

along that axis direction.
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B. Acoustic TTI Kernel

We investigate acoustic wave-propagation in Tilted Trans-

versely Isotropic (TTI) media on a staggered Lebedev-grid,

inspired by the formulation in [4], [5]. This approach is widely

used in the energy industry when a complex medium (earth

model) needs to be accurately reconstructed by simulation.

This method involves a coupled system of equations:

1

V 2
p

∂2p

∂t2
= (1 + 2δ)(∂2 −H)(p+ q) +Hp (1)

1

V 2
p

∂2q

∂t2
= 2(ε− δ)(∂2 −H)(p+ q) (2)

where H = (sinφ∂+cosφ∂)2, p represents the pressure field,

q is an ancillary structure, δ and ε are anisotropic parameters

as defined in [6], Vp is the medium property along the axis

of symmetry and φ is the tilt from vertical. We solve these

equations by applying a 73-pt 4th order stencil to the spatial

discretization of p and q. To compute each grid point values

from 13 different arrays are needed, where 4 arrays contain

p and q, 4 arrays contain Vp, φ, ε and δ and the rest hold

perfectly matched layer (see [7]) boundary condition values.

While this paper focuses on the acoustic TTI kernel, the

techniques that we explore are useful for implementing other

high-order stencils with boundary conditions on GPUs.

C. GPU Performance Issues

GPU’s architectural characteristics impact performance.

Execution Model: GPU uses a Single-Instruction-

Multiple-Thread (SIMT) execution model. A GPU bundles a

group of SIMT threads known as a warp or a wavefront. All

threads in a warp/wavefront execute the same instruction.

Memory Hierarchy: GPU memory hierarchies include

multiple levels of cache as well as specialized resources such

as constant memory, texture memory, and shared memory.

Each of these resources has a usage quota at thread, warp,

thread block, and device levels. Managing footprints in each

of these memories is critical to achieve high performance.

Other GPU characteristics that an implementation must con-

sider include branch divergence, work load balance, arithmetic

intensity, occupancy; each of these can impact performance.

D. 2.5D Streaming

Nguyen et al. [8] describe 2.5D streaming as part of their

3.5D blocking algorithm. 2.5D streaming involves blocking in

a 2D plane and streaming along a third dimension.

Micikevicius [9] describes a 2.5D streaming implementation

on NVIDIA GPUs, which loads data points of the currently

active plane in shared memory and employs registers to store

data elements of a star stencil along a streaming dimension.

The AN5D framework [10] refines the previous work [9]

with fixed register allocations, double buffering, and division

of the streaming dimension.

Ernst et al. [11] describe a thread folding strategy. For

2.5D streaming, a thread folds the computation of multiple

consecutive planes into one step to increase data reuse.

TABLE I: Implementation Strategies

Identifier Description
gmem 3d * 3D blocking using global memory only
smem 3d * 3D blocking using shared memory for the data arrays

smem 25d * 2.5D streaming with multiple planes in shared memory
semi 25d * 2.5D streaming using semi-stencil

E. Semi-Stencil

The performance of stencil computations usually suffer from

non-contiguous memory accesses, low computation/access,

and low data reuse [3]. The semi-stencil algorithm significantly

improved performance on CPUs by addressing these three

issues by factoring a stencil computation into two halves–

a forward update and a backward update. The semi-stencil

algorithm loads only the halo on one side rather than both

sides. The forward update stores a partial result for the stencil

based on the left half of the points along one dimension;

the backward update augments the partial result with the

calculation using the right half of the points. The semi-stencil

algorithm trades half of its loads for a store and reload of a

partial result. This is beneficial for high-order stencils with a

large halo size, as the reduction in loads becomes larger as

stencil width increases.

F. Other Stencil Optimizations

Time skewing [12]–[15] increases data reuse and cache

locality by skewing one or more data dimensions by the time

dimension and computing several time steps while data are in

cache. Overlapped tiling [16], [17] uses time skewing to trade

redundant computation along the boundaries of overlapped

tiles for a reduction in memory bandwidth. Split tiling [18]

is an alternate to overlapped tiling that advancing points

by multiple time steps with a two-phase computation—a

hyper-trapezoidal tiling along the time dimension followed

by a back-fill of the remaining points; Cache-oblivious algo-

rithms [19]–[22] make optimal use of cache level by tiling the

domain with a space cut or a time cut without the need to

consider cache sizes as parameters.

Other work tackles stencil computations from different

angles, including auto-tuning with dynamic resource allo-

cations [23], DAG reordering [24], diamond tiling using

a polyhedral model [25], [26], Domain-Specific Languages

(DSLs) [11], [22], [27]–[30], functional programming [31],

[32], and multi-layer intermediate representations [33]–[35].

III. SEMI-STENCIL ON GPUS

To create a high-performance implementation of the 73-pt

acoustic TTI stencil, we explored various issues, including

domain decomposition, blocking, algorithmic approaches, and

strategies for managing the memory hierarchy.

Prior work by Sai et al. [1] outlines various optimization

strategies for high-order seismic stencils on GPUs. We found

that their seven-region data domain decomposition works best

for the acoustic TTI kernel with an inner region surrounded

by a Perfectly Matched Layer (PML) region.
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Table I outlines the principal implementation strategies we

compared. In this section, we sketch how to use the semi-

stencil strategy to implement high-order stencils on GPUs,

highlight some important details, and describe two high-

performance semi-stencil implementations on GPUs.

To facilitate discussion of our GPU kernels, let Nx, Ny ,

and Nz denote the extents of the input data region along the

coordinate axes. Let Dx, Dy , and Dz be the thread block

dimensions along the X , Y , and Z axes, respectively. For 2.5D

streaming, z represents the induction variable while streaming

along the Z dimension.

A. Semi-Stencil

In one step of a conventional 2.5D streaming stencil compu-

tation, values of points in (2R+1) planes are loaded. Using the

semi-stencil algorithm along the streaming dimension reduces

the number of planes to (R + 1). On a GPU, we load these

(R + 1) planes in shared memory. Each thread uses registers

to hold partial results along the streaming dimension.

An implementation of the semi-stencil algorithm along the

streaming dimension of a 2.5D algorithm on a GPU has three

phases: (1) a prologue that loads several initial planes of

data into shared memory and performs forward computations

for a few planes to prepare for a streaming loop; (2) a

streaming loop that performs both forward and backward

computations on the planes in shared memory, writes one plane

of values back to global memory, and loads the next input

plane into shared memory; and (3) an epilogue that completes

the computation for the last few planes using only backward

computations. We describe these phases in more detail below.

Prologue: To prepare for streaming, data from planes

of z ← [−R..0) are loaded into shared memory. Next, we

perform R streaming steps. Each step loads a current plane of

data and uses data from R planes above the current plane to

perform the forward computation. Each thread stores its partial

result for each streaming step into a separate register.

Streaming Loop: Inside the streaming loop, for each

z ← [0..Nz), we first load the plane of data at z +R, i.e., R
steps below the current plane at z. Then, each thread performs

both the forward computation for its point at z + R and

the backward computation for its point at z. Each thread’s

forward computation computes a partial result for point z+R.

Each thread’s backward computation loads the partial result

for point z, computed R steps earlier in the prologue or an

earlier streaming step, and completes the stencil computation

using values from shared memory in planes z..(z+R). After

completing both the forward and backward computations for a

point, the kernel stores the final result back to global memory.

Epilogue: For each step z ← [Nz..(Nz +R)), we load

data from plane z+R. We don’t need any more forward com-

putation in this phase; we only perform backward computation

to complete the stencil computation for these planes.

The number of threads in a 2.5D streaming approach is

determined by the size of the 2D plane. To maximize thread-

level parallelism, the 2D plane size needs to be as large as

possible. With (R + 1) planes, the required size of shared

memory is (Dx + 2R)× (Dy + 2R)× (R+ 1) per thread

block. The data of a 2D plane is always loaded collaboratively

with all threads in the 2D thread block.

B. Semi-Stencil with Buffering the Next Plane

This variant of the semi-stencil implementation simultane-

ously prefetches the plane at (z + R + 1) while performing

forward and backward computations using planes z..(z +R).
This overlaps fetching the missing plane needed by the next

iteration of the streaming computation while computing with

the planes already in memory.

Overlapping the data fetching with computation hides the

memory latency of the data fetch; but, it requires an additional

plane in shared memory as the target for the asynchronous

copy. Using this approach, the required size of shared memory

increases to (Dx + 2R)× (Dy + 2R)× (R+ 2) per thread

block. If shared memory for the thread block is a limiting

resource, the need for an extra plane might reduce size of

the largest feasible 2D thread block. If so, that would reduce

thread-level parallelism, which could hurt performance.

C. Semi-Stencil with 2z Thread Folding

Ernst et al. [11] describe benefits from folding the com-

putation of f adjacent planes together to reuse data values

in registers. We applied this idea to a 2.5D semi-stencil

streaming approach by folding the computation of f planes

into one streaming step. Instead of performing semi-stencil

for one active plane, each step computes f planes. As each

streaming step completes, z advances by f rather than by

1. With more planes being used in one step, this variant

requires additional shared memory space to hold the points

in the additional planes. In our case, due to resource limits

on shared memory size, we can only reasonably do f = 2
planes at once, thus 2z folding. The shared memory required

is (Dx + 2R)× (Dy + 2R)× (R+ 3) per thread block.

IV. OPTIMIZATIONS

To accelerate kernel execution, we compose a variety of

optimizations. We apply a set of optimizations described

previously in the literature [1], which include using constant

memory for stencil coefficients, allocating data in pinned

memory, and padding to improve cache line alignment. This

section describes optimizations that work well with the semi-

stencil algorithm and speed up the acoustic TTI kernel.

A. Avoiding Unnecessary Data Movement

Data movement in GPUs requires multiple instruction cy-

cles. Moving data needed by multiple threads can cause stalls

from both the copy latency and thread synchronization. Our

2.5D streaming kernels avoid such stalls by maintaining a

circular buffer of planes in shared memory. Each streaming

iteration uses a different window of planes in the buffer. We

use loop unrolling so that each iteration of the streaming

algorithm accesses the proper window of planes. Several

iterations after a plane is loaded, it will no longer be needed

and will be replaced by another.
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TABLE II: System Specifications

GPU NVIDIA A100 NVIDIA V100
CPU AMD EPYC 7402 IBM POWER9

CPU Cores 96 160
RAM 512 GB 256 GB
OS RHEL v8.4 RHEL v7.7

Platform CUDA 11.2 CUDA 11.0
GPU Driver NV 470.57.02 NV 450.51.05

B. Arithmetic Index

High-order stencils load a large number of halo points. On

a GPU, an inefficient strategy for loading halo points could

cause two performance problems. First, there may be imbal-

anced work: while some threads are busy loading, others sit

idle. Second, conditional checking on a GPU results in branch

divergence among threads in a warp. Both have significant

impact on GPU performance due to GPU’s SIMT execution

model. Our goals are to distribute work evenly and reduce

conditionals, so that most or all threads contribute to the work

evenly, shortening the overall execution time.

To achieve these goals, we choose one axis and partition the

threads along that axis so that each thread fetches halo points

to the left or the right along each axis. This approach uses

a single conditional, fetches halos in parallel with multiple

threads, and spreads the work evenly among the threads.

C. Overlapping Computation with Data Fetching

To hide memory access latency, our implementations over-

lap computation with data fetching. This approach improves

performance by reducing stalls from thread barriers.

NVIDIA introduced hardware support for memcpy_async
in their latest A100 GPU. With memcpy_async, which

enables the data copies from global memory to shared memory

without using registers; this leaves more registers available for

use in a computation.

Some of our code versions overlap semi-stencil computation

with data prefetching using memcpy_async when buffering

for next plane. The hardware support for memcpy_async on

the A100 boosts performance.

V. EVALUATION

We evaluated our stencils on two NVIDIA GPU platforms.

Table II describes hardware and software specifications for

these systems. In the rest of the discussions, we refer to these

systems by their GPU models.

We assess all implementations and their variants that dif-

fer in algorithmic choices, optimization strategies, and GPU

thread block dimensions. For each machine, we run the kernels

with a large grid size based on its device memory capacity.

We run with grid size of 9003 for the A100 and 8503 for the

V100. We set compiler flags to -O3 -arch=sm_80 for the

A100 and -O3 -arch=sm_70 for the V100.

We first present a comparison of time measurements. Next,

we present a table with Roofline measurements of our kernels

on the A100, comparing achieved performance to empirical

peak performance. Finally, we discuss our results and offer

some of observations.

TABLE III: Time measurement in seconds on NVIDIA GPUs

Kernel Identifier A100 V100
gmem 3d 8x8x8 129.85± 0.72 162.69± 0.04
gmem 3d 32x4x4 88.19± 0.16 120.72± 0.06
smem 3d 8x8x8 80.22± 0.27 112.96± 0.05

smem 3d 32x4x4 51.56± 0.09 76.54± 0.05
smem 25d 16x8 88.61± 0.10 126.94± 0.04

smem 25d 16x16 76.52± 0.16 122.98± 0.12
semi 25d 16x8 71.53± 0.08 155.04± 0.22
semi 25d 16x16 69.42± 0.09 145.07± 0.16
semi 25d 32x16 54.74± 0.16 97.84± 0.10

semi+b 25d 16x16 65.12± 0.09 130.42± 0.18
semi+b 25d 32x16 52.06± 0.22 84.47± 0.09

semi+b+a 25d 16x16 59.97± 0.10 130.41± 0.18
semi+b+a 25d 32x16 47.43± 0.01 84.44± 0.08

semi+2z 25d 16x8 66.75± 0.10 122.97± 0.15
semi+2z 25d 16x16 66.37± 0.04 117.63± 0.09

Kernels with +b buffers the next plane, +a uses
memcpy_async for A100, and +2z uses 2z thread folding.

TABLE IV: DRAM Roofline for Top Performers on the A100

Kernel Identifier
FLOP

AI*
Peak Achieved

(x1013) GF** GF** % peak
gmem 3d 32x4x4 18.496 3.73 4570 1999 43.74%
smem 3d 32x4x4 18.496 3.74 4576 3453 75.46%
smem 25d 16x16 17.818 4.19 5134 2221 43.26%
semi 25d 32x16 19.352 3.34 4084 3396 83.16%

semi+b 25d 32x16 19.352 3.37 4124 3585 86.94%
semi+b+a 25d 32x16 19.352 3.48 4263 3940 92.42%
semi+2z 25d 16x16 19.283 4.43 5424 2746 50.64%

*Arithmetic Intensity **GFLOPs

A. Time measurements and comparison

Table III presents time measurements for 1000 time steps

for inner and PML regions. Prior to each simulation, we

first execute a few warmup iterations. Then, we execute each

simulation ten times. We report the average execution time

of the simulations as well as their standard deviation. The

block dimension variants can be inferred from the kernel

identifiers. 3D blocking kernels and 2.5D blocking ones fol-

low an id_3d_Dx_Dy_Dz and an id_25d_Dx_Dy pattern,

respectively. Our simulations have halo size R of 4.

Our fastest implementation on the A100 is

semi+b+a_25d_32x16. On the NVIDIA A100, it

was 2.13× faster than an OpenACC reference implementation

and 8.7% faster than the best conventional stencil computing

out of shared memory.

B. Roofline

Table IV compares the performance of top-performing ker-

nels with the bound imposed by the GPU DRAM bandwidth

using the Roofline [36], [37] performance model.

Our best kernel semi+b+a_25d_32x16 has a DRAM

arithmetic intensity of 3.48 and achieved 3,940 GFLOPs,

which is 92.42% of the DRAM performance bound.

C. Discussion

a) Semi-Stencil on GPUs: For high-order stencils, the

semi-stencil algorithm reduces the shared memory footprint
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TABLE V: Shared Memory Usage Table (in bytes) for Acous-

tic TTI Kernels

Number of Planes
Dx Dy 5 6 7 8 9
8 8 10240 12288 14336 16384 18432
16 8 15360 18432 21504 24576 27648
16 16 23040 27648 32256 36864 41472
32 16 38400 46080 53760 61440 69120
32 32 64000 76800 89600 102400 115200

enabling high performance on GPUs. Because a GPU has

limited on-device resources and each of thread block is bound

by its own resource quotas (e.g. registers, shared memory), a

reduction in resource use by a thread may permit launching

a GPU block with more threads, yielding better thread-level

parallelism. Semi-stencil is appealing for high-order stencils

because the larger the halo size R, the higher shared memory

savings one can achieve. For acoustic TTI kernels, without

semi-stencil, the 2D block size is limited by shared memory

to 16x16; the block size doubles to 32x16 when using semi-

stencil, which has better performance with twice the threads.

b) Buffering with Prefetching: Applying prefetching

while holding the thread block size constant can improve per-

formance. Without prefetching, one must synchronize before

loading a new plane to ensure all threads are done with the

plane being overwritten and then after loading a new plane

to make sure that no thread accesses a value before it is

present. With prefetching only one synchronization is needed

per iteration because the prefetched plane is not used by the

computation in the current iteration. Since stalls due to thread

synchronization are expensive, removing one synchronization

per iteration boosts performance.

In our experience, reducing thread block size to free up

shared memory for prefetching isn’t profitable.

c) Overlapping Prefetching with Computation: Because

memcpy_async on the A100 does not use registers, more

registers are available to the computation. Overlapping the

memory copy with the computation hides access latency and

boosts performance.

d) Memory Footprint v.s. Block Dimensions: Achieving

top performance on a GPU requires a delicate balance between

competing concerns.

When using 2.5D blocking, using larger 2D plane tends

to improve performance. We also observe performance im-

provements by applying optimization strategies, such as

buffering next plane data using prefetching, especially when

memcpy_async is available.

However, allocating larger 2D planes in shared memory

in conjunction with optimizations stresses resource limits.

For acoustic TTI kernels, Table V show the required shared

memory size in bytes with respect to number of planes and

2D thread block dimensions (Dx and Dy). Because NVIDIA

GPUs allow maximum 49152 bytes of static shared memory

allocation per block, unachievable combinations are marked

in red. One can use cudaFuncSetAttribute to increase

the amount of shared memory at the expense of decreasing

the L1 cache size. We leave this investigation as future work.
This shows that by balancing conflicting interests — max-

imizing thread-level parallelism with utilizing limited GPU

hardware resources — semi-stencil with next plane buffer-

ing achieved excellent performance. Semi-stencil reduces the

number of planes in shared memory from nine planes to

five, enabling kernels to be launched with double the number

of threads. Because of the dramatic reduction in shared-

memory consumption with the semi-stencil algorithm, there is

enough shared memory to support overlapping asynchronous

prefetching of the next plane with the computation.
Our results show that although 2z thread folding increases

performance with the same 2D plane size, it doesn’t yield

the best-performing acoustic TTI kernels because resource

constraints require a smaller 2D plane, which lowers thread-

level parallelism.
e) Code Portability: The smem_3d_32x4x4 imple-

mentation delivers high performance across a range of

GPUs. Its implementation has 211 lines of code while

semi+b+a_25d_32x16 has 513 lines, so it is easier to

develop. But it is 8.7% slower than the fastest semi-stencil

performance on A100 using asynchronized memory copy.

VI. CONCLUSIONS

This paper evaluates the performance of several imple-

mentations of a complex high-order stencil with boundary

conditions. It is well known that GPU implementations of

high-order stencils need careful design to best use limited

hardware resources. In particular, memory hierarchy issues

such as memory latency, data locality, data layout, and cache

alignment have huge effects on GPU performance.
A new insight in this paper is that the semi-stencil algorithm

is an essential component of the top performing GPU imple-

mentation of a complex high-order stencil used to perform a

computation of industrial interest.
For large problems, using large blocks that occupy all

GPU threads is an important ingredient for high performance

implementations. For complex stencils, computing with values

in GPU shared memory is typically faster than using global

memory. An advantage of the semi-stencil algorithm is that

it reduces the GPU shared memory footprint for a high-

order stencil to roughly half of that used by the conventional

approach. Beyond enabling a large block size that uses all

GPU threads, the semi-stencil algorithm saves enough space

in shared memory that we are able to allocate an extra plane

of data that we can use to prefetch values for the next

iteration. In our 2.5D streaming semi-stencil on the A100,

memcpy_async overlaps the prefetch of a plane of data for

the next iteration with the computation of a plane of outputs for

the current iteration. This overlap enables an implementation

that is 8.7% faster than the best conventional stencil computing

out of GPU shared memory.
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