
Accelerating High-Order Stencils on GPUs

Ryuichi Sai
Department of Computer Science

Rice University
Houston, TX, USA

ryuichi@rice.edu

John Mellor-Crummey
Department of Computer Science

Rice University
Houston, TX, USA

johnmc@rice.edu

Xiaozhu Meng
Department of Computer Science

Rice University
Houston, TX, USA

xm13@rice.edu

Mauricio Araya-Polo
Computational Science and Engineering

Total E&P Research and Technology US, LLC.
Houston, TX, USA

Jie Meng
Computational Science and Engineering

Total E&P Research and Technology US, LLC.
Houston, TX, USA

Abstract—While implementation strategies for low-order sten-
cils on GPUs have been well-studied in the literature, not all
of the techniques work well for high-order stencils, such as
those used for seismic imaging. In this paper, we study practical
seismic imaging computations on GPUs using high-order stencils
on large domains with meaningful boundary conditions. We
manually crafted a collection of implementations of a 25-point
seismic modeling stencil in CUDA along with code to apply
the boundary conditions. We evaluated our stencil code shapes,
memory hierarchy usage, data-fetching patterns, and other per-
formance attributes. We conducted an empirical evaluation of
these stencils using several mature and emerging tools and discuss
our quantitative findings. Some of our implementations achieved
twice the performance of a proprietary code developed in C and
mapped to GPUs using OpenACC. Additionally, several of our
implementations have excellent performance portability.

Index Terms—stencil computation, high-order, boundary con-
dition, HPC, GPU

I. INTRODUCTION

In the oil and gas industry, seismic depth imaging based on

high-order stencils is the main tool used to identify relevant

subsurface structures. Today, HPC platforms often employ

Graphics Processing Units (GPUs) to increase their compu-

tational power. For that reason, understanding how to develop

efficient high-order stencils for GPUs is a topic of significant

interest. However, the complexity of GPU architectures makes

achieving top performance with high-order stencils surpris-

ingly difficult. Without careful design, stencil computations on

GPUs are likely to underperform. An efficient implementation

of high-order stencils with boundary conditions on a GPU

requires paying careful attention to data reuse, warp utilization,

work balance, and arithmetic intensity among other issues.
Since GPUs from different vendors have different charac-

teristics and the characteristics of GPUs from a single vendor

often change significantly between generations, performance

portability across GPUs with varying characteristics is of

significant interest. The best kernel on one GPU may not be

the best on GPUs from other vendors and may not remain the

best on newer generations of GPUs.
For these reasons, our current goal is to identify how

to achieve excellent performance for high-order stencils on

GPUs and understand the factors that affect performance

portability. To do so, we need to understand the strengths

and weaknesses of various code shapes for high-order stencils.

This paper describes our progress toward this goal and makes

the following contributions:

• a careful comparison of existing approaches, including

an assessment of their strengths and weaknesses when

applied to high-order stencils with boundary conditions;

• the implementation and tuning of a collection of high-

order stencil kernels with a selected set of algorithms

and their variants using CUDA;

• a performance comparison of stencil implementations

across multiple generations of NVIDIA GPUs (NVS510,

P100, V100, and A100), along with a quantitative as-

sessment of stencil performance using a Roofline perfor-

mance model for GPUs; and

• an investigation of the characteristics of high-order stencil

kernels that affect their performance.

Section II reviews related work. Sections III and IV present

our approaches and implementations, respectively. Section V

describes our evaluation methodology, experimental results,

and a discussion of our findings. Section VI summarizes our

conclusions and briefly discusses our plans for future work.

II. RELATED WORK

There are many papers that describe strategies for efficient

stencil implementations on CPUs [1], [2], [3], [4], [5], [6], [7],

[8], [9], [10], [14], [15], [11] and GPUs [12], [13], [16], [17],

[18], [21], [22]. We discuss the most related efforts below.

Time skewing [6], [7] accelerates stencil computations by

increasing data reuse and cache locality by skewing one or

more data dimensions by the time dimension so that several

time steps can be computed for a tile while values are in cache.

It has been widely used on CPUs, e.g., [8], [9], and [10].

Overlapped tiling uses time skewing to increase the arith-

metic intensity of parallel stencil computations by trading

redundant computation along the boundaries of overlapped

tiles for a reduction in memory bandwidth required [11], [12].

Overlapped tiling is effective on GPUs because loading data

86

2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)

978-0-7381-1048-6/20/$31.00 ©2020 IEEE
DOI 10.1109/PMBS51919.2020.00014

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

from a GPU’s global memory is much more costly than data-

parallel computation. Furthermore, redundant computation can

be overlapped with data accesses to help hide memory latency.

While overlapped tiling has been shown to improve the

performance of low-order stencils on GPUs, for high-order

stencils, redundant computation grows quickly when skewed

across multiple time steps by the width of a high-order stencil.

Split tiling [13] is an alternate approach for accelerating

computation with time skewing. Rather than using overlapped

tiles, which can introduce large amounts of redundant com-

putation, split tiling computes points in two phases. The first

phase computes tiles in parallel as hypertrapezoids that taper

along the time dimension. Once all tiles from the first phase

have been computed, a second phase back-fills the missing

points in the time dimension.

Nguyen et al. [16] introduce a 3.5D blocking algorithm as a

mix of 2.5D spatial blocking with 1D temporal blocking. 2.5D

spatial blocking involves blocking in a 2D plane and streaming

along a third dimension. To increase data reuse, they store ac-

tive 2D planes in GPU shared memory. In a 3.5D variant, they

employ time skewing to advance the computation for multiple

time steps before writing data back to the global memory.

While the 3.5D algorithm works very well on CPUs, the 1D

temporal blocking introduces two potential implementation

challenges for high-order stencils with boundary conditions

on GPUs: barrier synchronizations and limited parallelism. In

this paper, we evaluate 2.5D spatial blocking of high-order

stencils and plan to explore 3.5D blocking in future work.

Nguyen et al.’s approach [16] loads a central plane along

with halo planes above and below into shared memory for

faster data access while computing stencil operations for points

in the central plane. While this strategy improves data reuse,

the size of a data tile is limited by the GPU shared memory

size. To reduce the shared memory pressure, we looked into

the work that uses registers on GPUs. Micikevicius [17] also

uses 2.5D blocking; however, his approach maintains data

points along the third dimension in registers rather than in

shared memory.

In the AN5D framework, Matsumura et al. [18] accelerate

2.5D and 3.5D stencils with three refinements: fixed register

allocations, double buffering, and division of the streaming

dimension. While these approaches work extremely well for

simple single-statement kernels, neither boundary conditions

nor multi-statement stencils are evaluated. In our work, we

study a high-order stencil with boundary conditions, and part

of our application has multiple statements, instead of simple

single-statement stencil updates.

Other interesting approaches to tackle the stencil compu-

tations include auto-tuning with dynamic resource allocations

[19], DAG reordering [20], diamond tiling using a polyhedral

model [23], [24], functional programming [25], [26], and

multi-layer intermediate representations [27], [28], [29].

From a software engineering perspective, there are two

strategies for developing stencils for NVIDIA GPUs: hand-

written kernels in CUDA and Domain-Specific Language

(DSL)-based approaches [5], [21], [30], [31], [32], [33], [34].

DSL approaches can simplify the generation of code with com-

plex logic. While we are interested in DSL-based approaches

for the future, the focus of this paper is to understand in detail

the strengths and weaknesses of various algorithmic strategies

for achieving high performance and performance portability

for high-order stencils. To avoid limitations as we explore this

space, we chose to evaluate hand-written kernels.

III. APPROACH

We developed several implementations of the acoustic

isotropic approximation of the wave equation [35] used for

seismic imaging by the oil and gas industry. Solving this with

finite differences involves using a high-order stencil-based

solver with suitable boundary conditions. Oil and gas applica-

tions use such strategies on large grids to model subsurface and

generate seismic data from source perturbations. In our work,

we employ different code shapes that differ principally in how

they organize the computation (e.g., 2D vs. 3D tiles) and how

they manage the memory hierarchy. In the rest of this sec-

tion, we briefly describe the acoustic isotropic approximation,

explain the various data decomposition strategies we employ,

describe blocking strategies, and discuss how we structure our

implementations.

A. Seismic Modeling and Acoustic Isotropic Kernel

We study a stencil-based implementation of the acoustic

isotropic wave equation approximation for seismic modeling.

The details of the model are described in [35]. For our

simulations, we employ a Perfectly-Matched Layer (PML)

[36] boundary condition to the regions around the physical

domain. The resulting extended domain consists of an “inner”

region and a surrounding “PML” region.

To solve the acoustic isotropic approximation for the wave

equation, in the inner region we apply a complex multi-

statement stencil that is 8th-order in space and 2nd-order in

time. This involves applying a star shaped 25-point stencil to

data stored in the u-array. In the PML layer, we employ a

7-point star shaped stencil to compute boundary conditions.

Data for this 7-point stencil is stored in the eta-array.

In production simulations, the grid, which represents the

physical domain, is usually large with up to 4000 grid points

in each dimension. To yield results of practical use, the stencil

computations need to be applied iteratively for a large number

of time steps.

While we specifically study the acoustic isotropic kernel

as the seismic model wave approximation in this paper, we

believe that our approach is general enough that it could be

applied to other high-order stencils with boundary conditions.

B. Data Domain Decomposition

As described in the previous section, our data domain con-

tains two regions, the inner region and the Perfectly Matched

Layer (PML) boundaries. The inner region is a cubic grid

sitting at the center of the data domain and the PML region

represents the volume between the inner region and the data

87

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Data domain decomposition.

domain boundaries. The size of the inner region and the width

of the PML region are defined as inputs to a simulation.

GPUs have different architectural characteristics than CPUs.

As a result, GPU computations must be structured differently

than CPU computations to achieve high performance. First, the

Single-Instruction-Multiple-Thread (SIMT) execution model

used by GPUs differs significantly from the execution model

on CPUs. On NVIDIA GPUs, the execution model is realized

by scheduling groups of 32 SIMT threads known as warps.

To exploit thread-level parallelism in the SIMT model, GPU

computations must utilize fine-grain data parallelism. A group

of warps constitute a block which has its own quota for shared

memory, registers, and other hardware resources; the number

of blocks that can be active simultaneously is limited by

the aggregated resource quota of active threads enforced by

hardware limits. Second, since GPUs have a memory hierar-

chy distinct from CPUs, computations must be appropriately

structured to exploit the GPU memory hierarchy. Finally, on

NVIDIA GPUs, one could realize coarse-grain parallelism

across Streaming Multiprocessors (SMs) by partitioning the

computation into a sufficient number of blocks to keep the

SMs busy.

We experimented with three decomposition strategies based

on our data domain and boundary conditions.

First, we developed a single kernel that could be applied to

any region of the data domain. The kernel contains condition-

als that employ the PML calculations near any of the domain

boundaries and compute the stencil for the acoustic isotropic

wave function approximation in the inner region of the data

domain. This strategy yields branch divergence for subregions

that contain points in both the PML and inner regions which

hurt performance.

Next, we developed separated kernels for the inner region

and the PML region. These separate kernels can be launched

concurrently. This strategy eliminates the need for checking

whether the point is inside inner region or PML region in

every kernel, thus, reducing the chance of branch divergence.

Nevertheless, it leaves unbalanced work among threads, along

the boundaries between the inner and PML regions when if

the size of the GPU blocks doesn’t evenly divide the extents

of the PML and inner regions.

Lastly, we developed the strategy as shown in Figure 1. We

separate the inner region from PML region, and further divide

PML region into six subregions. We slice the domain along

the top and bottom of the inner region, and this gives us a

Fig. 2: Blocking strategies: (left) 3D blocking, (right) 2.5D

blocking.

top block, a bottom block, and a border of four walls. We

further slice along the front and back, and it becomes four

separate walls. These four walls and the two subregions from

the first cuts result in total of six subregions of the PML region,

namely: top, bottom, front, back, left and right subregions. The

symmetry of these subregions is a relevant characteristic that

we discuss later along with our results. Next, we concurrently

launch individual GPU kernels of stencil computations for

each of the seven subregions: one for the inner region and

six for the PML subregions. This approach does not have

intrinsic branch divergence at the boundaries. While there are

still work imbalances due to different grid sizes, they occur

only for a few edge cases along the borders. We could further

reduce unbalanced work by using automated code generation

that tailors the number of threads to match the number of

points at border locations.

C. Blocking Strategies

For each of the seven regions, we further slice it into smaller

blocks, so that each block can fit into GPU’s resources for

each kernel launch. We use two blocking strategies in our

experiments: 3D Blocking and 2.5D Blocking.

1) 3D Blocking: We divide each of the data regions into

axis-aligned 3D blocks. To find the best block dimensions, we

use fixed values in each execution to simplify experiments with

different values. To perform stencil computations on GPUs,

each block maps to a kernel launch with a 3D thread block

with the thread dimensions matching the block dimensions.

All points inside the block and their halos are explicitly copied

into the GPU on-chip memory before any kernel is launched.

2) 2.5D Blocking: We partition the data domain along the

inner two X and Y data dimensions and perform a streaming

computation along the outermost Z dimension. We launch

kernels with 2D thread blocks with their dimensions matching

the 2D planes.

D. Kernels and their variants

We implemented several kernels. Each kernel employs a

different combination of strategies for blocking, managing data

accesses, and traversing the data volume. To better understand

the strengths and weaknesses of these implementation alter-

natives, every implementation has multiple variants, which

employ different tile sizes. We describe the details of our

kernel implementations in the next section.

88

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

IV. IMPLEMENTATIONS

In describing our implementations, we use R to denote the

width of the halo, which is half the spatial order of the stencil.

For the acoustic isotropic simulations in our experiments, R
is 4. Let Nx, Ny, and Nz denote the extents of the input

data region along the X , Y , and Z axes, respectively. For 3D

blocks, we use (x, y, z) to denote the 3D coordinate for both a

point location in a 3D block and the thread in a kernel thread

block. Similarly, for 2D planes, (x, y) is used to locate a point

in the 2D plane, as well as identifying the thread.
1) 3D Blocking Using Global Memory Only: This is con-

ceptually and practically the simplest kernel to understand and

implement. Let Dx, Dy, and Dz denote the block dimensions

in the X , Y , and Z axes, respectively. Thus the block size

is Dx×Dy ×Dz. Because we launch each kernel with a

thread block of the same size, the total number of points

must be ≤ 1024 to respect the GPU limit of at most 1024
threads per block. The GPU grid size of each data region is

�Nx/Dx� × �Ny/Dy� × �Nz/Dz�.
During execution of the 25-point stencil kernel, each thread

fetches the point for itself, as well as 4 neighboring points

along each direction of each axis. For good performance, we

ensure a good memory access pattern when stencil points

are fetched directly from global memory. Since we store the

3D grid data as a flat 1D array, we ensure global memory

coalescing for the most innermost dimension X .
We refer to the family of 3D kernel implementations that

fetch stencil points directly from the u array in global memory

as as gmem_{Dx}_{Dy}_{Dz} in our experiments.
2) 3D Blocking Using Shared Memory for the u Array:

This approach is a variant of the aforementioned 3D blocking

using global memory. It uses same 3D blocking strategy

for each of the data regions; however, instead of computing

directly on data fetched from global memory, this imple-

mentation fetches the u array from global memory, stores

it into shared memory, and performs the stencil computation

on data fetched from shared memory. The total number of

points we fetch in this case is Dx×Dy ×Dz for a block

and (Dx×Dy +Dx×Dz +Dy ×Dz)×R× 2 for halos

around the block. For high order stencils, one must account

for the halo size to ensure both the block and the halo fit in

shared memory.
For high-order stencils, the halo accounts for a significant

fraction of the data to fetch into shared memory. Thus,

designing the right approach to minimize the fetch cost is

crucial to overall performance. We describe the most general

approach with good performance based on our experiments.
First, thread (i, j, k) fetches the point (i, j, k). Then, when

we design the block size, for each thread dimension, we must

have at least 2R threads, and we use the first 2R threads along

each dimension to fetch the halos. Along each dimension,

threads 0 to R− 1 fetch the halo on one side, and threads

R to 2R− 1 fetch the halo on the other side. Fetching is

perfectly balanced for each thread when D = 2R.
To use this strategy for the acoustic isotropic model where

R is 4, we need to have at least eight threads along each

dimension. Considering that maximum number of threads in

a block is 1024 and the total amount of shared memory per

block, the only possible tile size for this case is 8 × 8 × 8.

This results in perfectly balanced fetch work and computation

for threads along each dimension. Both the central and halo

points need to be fetched in a fashion that maximizes global

memory coalescing.

We refer to the implementation that uses 3D blocking and

shared memory as smem u in our experiments.

3) 3D Blocking Using Shared Memory for Boundary Re-
gions: This implementation also exploits shared memory and

uses 3D blocking. The main difference between this approach

and the previous one is that this implementation fetches the

eta array into shared memory, whereas the previous approach

fetches the u array into shared memory. Because eta is only

used in the stencil computation inside the PML region, this

strategy applies only in the PML kernel.

This approach may appear to be nothing new; however, it

is interesting for two reasons. First, as previously described,

computations on eta in the PML region use a low-order 7-

point stencil rather than the 25-point high-order stencil of the

inner region. In fact, the halo size of eta is just one. Such

low-order stencils have been widely studied in the literature;

however, the combination of high and low order stencils is

seldom addressed. Second, this implementation gives us an

opportunity to observe the performance changes by using

global memory with a good access pattern for a high-order

stencil, meanwhile using shared memory for a lower-order

stencil.

In terms of fetching eta into shared memory, we have two

implementations that differ in the number of conditionals. In

our experiments, we refer to the shared memory kernel im-

plementation that uses three conditionals as smem eta 3 and

the implementation that uses one conditional as smem eta 1.

We let R eta denote the width of halos for eta, and for the

acoustic isotropic PML layer, R eta is 1.

smem eta 3 uses an approach similar to smem u, where

the first 2R eta threads from each dimension fetch the halos.

Since we have three dimensions, we need three conditionals,

one for each dimension, respectively. Because R eta is just

1, we only need two threads fetching halos along each thread

dimension. This could introduce unbalanced fetch work be-

cause for a 3D block of 8x8x8, if only two threads in each

dimension perform halo fetching, that is one fourth of the

threads. Because we have three dimensions, only 1/64 of the

threads perform fetching, while others are idle.

To address the work imbalance, we developed smem eta 1
with only one condition, where we choose to use the first six

threads from the X dimension to fetch halo points. Algorithm

1 describes how we tilt the six planes of threads to identify the

halo point that the each thread is responsible for the fetching.

For 8 × 8 × 8 3D blocks, because 6/8 threads perform the

fetching, in theory, we reduce thread idleness to just 20%.

However, this algorithm has relatively complex arithmetic to

tilt each thread to its proper halo position, so an experimental

evaluation is needed to see whether the strategy is profitable.

89

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

Data: xidz,yidx, zidx: thread index of x, y, and z

dimension, respectively

Data: nt: number of threads per block dimension

Result: g: coordinate for global memory

Result: s: coordinate for shared memory

1 if zidx < 6 then
2 z ← zidx & 1;

3 sz ← z ∗ 9;

4 gz ← z ∗ (bt+ 1)− 1;

5 xzswap ← zidx <= 1;

6 yzswap ← (zidx & 2) == 2;

7 si ← xzswap ? sz : (xidx+1);
8 sj ← yzswap ? sz : (yidx+1);
9 si ← xzswap ?(xidx+1) : (yzswap?(yidx+1) : sz);

10 gi ← xzswap ? gz : xidx;

11 gj ← yzswap ? gz : yidx;

12 gi ← xzswap ? xidx : (yzswap ? yidx: gz);
13 s← (si, sj, sk);

14 g← (gi, gj, gk);

15 end
Algorithm 1: Shared memory halo fetching strategy for

eta using only one conditional.

4) 2.5D Streaming with Multi-Plane using Shared Memory:
Starting from this implementation, we use 2.5D blocking. As

already described, the 2.5D algorithm mainly streams a 2D

plane through the third dimension. In our implementations,

we choose the 2D XY-subplane because X is the innermost

dimension in our data layout. Let Dx and Dy denote the di-

mensions of the 2D tile along the X and Y axes, respectively.

So we launch kernels using 2D thread blocks with the size of

Dx by Dy and a total of Dx×Dy threads. The GPU grid

size of each data region is �Nx/Dx� × �Ny/Dy�.
In this approach, we exploit shared memory as a buffer to

store all data needed in the stencil computations for a particular

XY-subplane. In addition to the current XY-subplane, we also

load R subplanes above the current subplane and R subplanes

below into the shared memory. Therefore, we allocate a buffer

for 2R+ 1 planes, where each has (Dx+ 2R)× (Dy + 2R)
points, thus, total of (2R+ 1)× (Dx+ 2R)× (Dy + 2R)
points. Hence, the extent of each subplane must be carefully

chosen so that the buffer size is as large as possible to enhance

data reuse, but at the same time, it must be chosen so that the

aggregate data volume of the planes doesn’t exceed the shared

memory available to a block. Let B denote our buffer, and B[i]
denote the i-th subplane in the buffer.

Before we can start the streaming computation, points from

the top halos are pre-loaded into buffer B[0..R) and the

first R XY-subplanes are pre-loaded into B[R..2R). Then,

in our streaming loop, for each z ← [0..Nz), we first load

the (z+R)-th XY-subplane into B[(z +R) mod (2R+ 1)];
next, we perform the stencil computation for the z-th XY-

subplane with the stencil points read from B in shared

memory; finally, we store the result back to global memory.

While we explain this strategy using a modulus operator,

in practice, we avoid using it for speed. Since the z index

always increases by one inside the streaming loop, we use

loop unrolling and index rotation to achieve the desired effect

without modulus computations.

We refer to the family of kernel implementations of this

strategy as st smem {Dx} {Dy} in our experiments.

The shared memory buffer used by this approach is limited

by the GPU shared memory size. Alternatively, one can

store data for stencil points along the streaming dimension

in registers. We discuss two approaches that use registers to

store points along the streaming dimension in the following

sections.

5) 2.5D Streaming using Register Shifting:
In this 2.5D streaming approach, we keep points of the

current XY-subplane in shared memory. However, when we

stream along the z-axis, we use registers for the points along

the z-axis. In contrast to shared memory, where data loaded

from one thread is accessible by other threads in the same

block, registers are only accessible by the current thread. Since

we are streaming along the z-axis, the data from z-axis loaded

for one thread is not needed by other threads.

So we allocate a shared memory space to hold

(Dx+ 2R)× (Dy + 2R) points for the currently active plane.

The shared memory footprint compared to the previous method

is 1 : (2R+ 1). For high-order stencils, R is large so that

the shared memory usage reduction is significant. Let S(x, y)
denote the shared memory with location (x, y).

We also allocate 2R+1 registers for the current point and its

neighbors in each direction along the z-axis. Let Reg(x, y)[i]
denote the i-th register for the thread (x, y).

Before we can start the streaming computation, thread (x, y)
fetches data values from (x, y, z) for z ← [−R..R) and stores

them into register Reg(x, y)[0..2R), respectively. Then, inside

the stream loop, for each z ← [0..Nz), we first shift the

register indices back one position on each thread, such that for

r ← (0..2R], Reg(x, y)[r − 1] = Reg(x, y)[r]. Then, we load

the leading point along the streaming dimension (x, y, z+R)
into register Reg(x, y)[2R]. Next, we fetch data (x, y, z) from

global memory into S(x, y); and we finally perform the stencil

computation by using the data of XY-subplane from shared

memory and data along the z-axis from registers. Finally, the

kernel stores the stencil result for each thread back to global

memory.

We refer to the family of kernel implementations using this

strategy as st reg shft {Dx} {Dy} in our experiments.

Although the notation we use above for registers might give

the impression that we are using array indexing to access

register values, in our implementation, registers are expressed

explicitly as 2R+ 1 scalar variables. Since our acoustic

isotropic kernel has R = 4, which is the same as the sample

code by Micikevicius [17], our implementation uses the same

variable names: behind4, behind3, behind2, behind1,

current, front1, front2, front3, and front4.

6) 2.5D Streaming using Fixed Registers with Loop Un-
rolling:

90

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

V100 P100 NVS510

CPU
IBM

POWER9
IBM

POWER8NVL
Intel Xeon
E3-1245 v6

CPU Cores 160 160 8
RAM 256 GB 256 GB 16 GB

GPU
NVIDIA

Tesla V100
NVIDIA

Tesla P100
NVIDIA
NVS 510

GRAM 32 GB 16 GB 2 GB

OS RHEL v7.7 RHEL v7.4
Ubuntu

18.04 LTS
CUDA 10.2.89 10.1 10.2.89

NVIDIA Driver 440.33.01 418.39 440.33.01

TABLE I: Machine Specifications

Like the previous approach, this implementation uses shared

memory for the current XY-subplane and registers for points

along the z-axis – the streaming dimension. However, the

values in the registers are fixed instead of being “shifted.”

We again allocate a shared memory of

(Dx+ 2R)× (Dy + 2R) points. Let S(x, y) denotes

the shared memory for location (x, y). We allocate 2R + 1
registers as well, and denote Reg(x, y)[i] for the i-th register

of the thread (x, y). In practice, they are 2R+ 1 named

variables.

Before we can start the streaming computation, thread

(x, y) fetches data from (x, y, z) for z ← [−R..R) and

stores them into register Reg(x, y)[0..2R), respectively.

Then, inside the stream loop, for each z ← [0..Nz), we

do not modify any value in the existing registers; we

only update register Reg(x, y)[(z + 2R) mod (2R + 1)]
with the value of point (x, y, z + R). Then, we fetch

data (x, y, z) from global memory into S(x, y). Next,

we perform the stencil computation by using the data of

XY-subplane from shared memory and i-th data above

current point from Reg(x, y)[(z +R− i) mod (2R+ 1)],
and j-th data below the current point from

Reg(x, y)[(z +R+ j) mod (2R+ 1)]. Finally, the kernel

stores the result back to global memory.

To further improve performance, we unroll the streaming

loop. We introduce macros with register indices as macro

placeholders. Inside the streaming loop, we expand 2R + 1
macro calls, each with register indices shifted by one. We

check and exit the loop when the stream reaches the boundary

of z-axis.

We refer to the family of kernel implementations using this

strategy as st reg fixed {Dx} {Dy} in our experiments.

V. EVALUATION

A. Experimental Platforms

We evaluate all kernel implementations on several machines,

each with a different generation of NVIDIA GPU. Table I lists

the specifications for our primary experimental platforms. We

refer to these machines by their GPU models.

• Machine V100 is equipped with four NVIDIA V100

GPUs. We use one dedicated GPU for our experiments.

We use the compiler option -arch=sm_70 to compile

all kernels for this platform.

• Machine P100 is equipped with four NVIDIA P100

GPUs. We use one dedicated GPU for our experiments.

We use the compiler option -arch=sm_60 to compile

all kernels for this platform.

• Machine NVS510 has one NVIDIA NVS510 GPU. We

use the compiler option -arch=sm_30 to compile all

kernels for this platform.

We use the -O3 optimization flag with nvcc when compiling

kernels for each of the GPUs.

On NVS510, support for some tooling is marked as dep-

recated. While the tools work to some extent, many have

limited functionality. Also, the GPU memory available on

NVS510 doesn’t support grid sizes needed for real-world use.

Therefore, we only use this machine for basic comparisons

across GPU generations. While we examine some metrics on

this platform, we don’t discuss them in detail.

Additionally, NVIDIA also ran implementations of three of

our fastest kernels on a system with both an A100 GPU and

a V100 of their own.

In most situations, we let the nvcc compiler figure out

the register usage by itself, but we pay very close attention

to the resulting register footprint. However, there are a few

cases, where we specify the maximum number of registers

used by a kernel using the compiler flag -maxrregcount=X
to prevent register spilling.

We use HPCToolkit [40], [41] version 20200803, Empirical

Roofline Toolkit [39], and NVIDIA Nsight Compute version

2019.5.0 during our evaluations.

B. Evaluation Methodologies

We evaluate all implementations and their variants. First,

we conducte basic time measurements. Second, we use HPC-

Toolkit’s GPU support [41] to profile the kernel details with

PC sampling. Third, we run Nsight Compute to measure

device-specific kernel characteristics. Finally, we use the Em-

pirical Roofline Toolkit to understand memory bandwidth

limits on algorithm performance. We calculate the arithmetic

intensity and the performance of every kernel, and compare

them with the roofline chart. We describe each of our evalua-

tion methods below.

1) Time Measurements: For each machine, based on its

device memory size, we run the kernels with a large grid size

supported by the device memory. For V100 and A100, we

use a grid size of 10003; for P100, we use a grid size of

8933; for NVS510, we use a grid size of 3003. As described

in III-A, the stencil needs multiple iterations to converge. For

benchmarking, we use 1000 iterations for all kernels on all

machines. For each execution, we warm up the kernel by

running the entire execution once, and then we repeat it five

times, recording the average time for the five runs.

We provided three of our fastest implementations

(gmem_8x8x8, smem_u, and st_reg_fixed_32x32) to

NVIDIA, and NVIDIA performed time measurement on both

the original (with different dimension sizes for the two 3D

implementations, gmem_32x4x4, smem_u_32x4x4) and

optimized versions on A100 and V100 systems of their own.

91

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

2) HPCToolkit: We use the August 2020 release of the

HPCToolkit to collect GPU kernel metrics, such as register

use, block and grid size, as well as PC sampling statistics

such as exposed latencies and their kinds.

HPCToolkit provides two graphical user interface to an-

alyze the performance database, namely, HPCViewer and

HPCTraceViewer. We use HPCViewer primarily for is-

sues such as memory stalls, which enables us to easily spot

which source lines have the most significant stalls. We also

use HPCViewer to quickly identify performance hotspots in

our kernel executions using its code-centric views. We use

HPCTraceViewer to inspect the program execution over

time, which enables us to quickly spot idleness and see the

associated calling contexts. We describe some of our findings

using HPCToolkit in our discussion of the evaluation results.

3) Nsight Compute: We run Nsight Compute to examine

kernel characteristics, including theoretical and achieved oc-

cupancy. Nsight Compute provides insights when performance

differences are driven by the kernel characteristics. For exam-

ple, when low occupancy happens, one can easily tell from an

Nsight Compute report whether or not the problem seems to

be associated with the register footprint, the shared memory

footprint, or the number of threads.

Nsight Compute re-plays every kernel execution multiple

times to collect a complete set of measurements, which adds

a huge measurement overhead. When we use Nsight Compute,

we run only five iterations.

4) Roofline Performance Model: We use the GPU Roofline

performance model to see how well our kernels perform

relative to a machine’s practical peak based on each kernel’s

arithmetic intensity and the memory bandwidth-based perfor-

mance limit for that particular arithmetic intensity.

We use the Empirical Roofline Toolkit (ERT) for machine

characterizations. It runs several micro-benchmarks to char-

acterize the peak compute speed and memory bandwidth of

the machine. Benchmarking directly on a machine gives us an

achievable performance bound, which is substantially lower

than the theoretical peak claimed by the manufacturers when

a kernel is memory bound.

We characterize kernels using nvprof by measuring sev-

eral kernel performance metrics, including FLOPs, L2 read

and write transactions, as well as DRAM read and write

transactions. Output from nvprof is then fed into the cal-

culations of both the performance and the arithmetic intensity

for each kernel. Performance is calculated by the division

of the measured FLOPS by the measured execution time.

Arithmetic intensities are calculated by the division of the

measured FLOPS by the measured bytes accessed on DRAM

and L2 cache respectively.

We compare the performance of each kernel with the peak

performance of the machine it runs on. We then compare

kernels by their arithmetic intensities and their relative per-

formance.

Kernel Machine
Kernel Identifier Dx Dy Dz V100 P100 NVS510

gmem 8x8x8 8 8 8 53.88 117.74 415.85
gmem 16x16x4 16 16 4 85.52 195.82 760.72
gmem 32x32x1 32 32 1 292.36 639.62 2507.22

smem u 8 8 8 57.30 76.18 210.42
smem eta 1 8 8 8 54.87 119.15 397.56
smem eta 3 8 8 8 54.34 117.39 396.49

st smem 8x16 8 16 - 113.46 105.41 439.47
st smem 16x8 16 8 - 59.92 77.91 425.73
st smem 16x16 16 16 - 55.87 72.73 349.45

st reg shft 16x16 16 16 - 65.79 80.23 182.52
st reg shft 32x16 32 16 - 60.83 70.63 171.30
st reg shft 32x32 32 32 - 93.92 76.27 167.29
st reg fixed 16x16 16 16 - 61.66 76.10 170.03
st reg fixed 32x16 32 16 - 62.45 66.60 162.05
st reg fixed 32x32 32 32 - 58.96 61.74 160.91

TABLE II: Time Measurement on V100, P100, and NVS510

Kernel Identifier V100 A100 Speedup
gmem 32x4x4 54.33 34.53 1.57

smem u 32x4x4 57.90 30.96 1.87
st reg fixed 32x32 57.10 28.89 1.98

gmem 32x4x4 (optimized) 48.00 24.14 1.99
smem u 32x4x4 (optimized) 54.41 25.17 2.16

st reg fixed 32x32 (optimized) 45.93 25.79 1.78

TABLE III: Time Measurement on NVIDIA A100 and V100

C. Results

In this section, we first present a summary of our results in

tables and plots. After presenting our findings, we discuss our

kernel measurements from several perspectives.

Table II presents time measurements for the kernels. For 3D

blockings, the columns Dx, Dy, and Dz stand for the block

dimensions along the x, y, and z axes, respectively. For 2.5D

blockings, only columns for Dx and Dy are reported since

the z-axis is unpartitioned.

Table III presents measurements conducted by NVIDIA

with both derived and optimized versions based on three of

our fastest kernels on their own A100 and V100 systems.

Table IV presents kernel characteristics for the 25-point

stencil applied to the inner data region. Characteristics for low-

order stencil used in the PML region can be found in a longer

technical report [42].

Table V presents the performance characteristics of our

implementations on the V100. Figures 3a and 3b visualize

these performance characteristics using the roofline perfor-

mance model, showing the rooflines for L2 and DRAM,

respectively. The y-axes of these figures represent performance

and x-axes show arithmetic intensity. An zoomed-in version

of the roofline kernel characteristics can be found in a longer

technical report [42].

From our results, we offer the following observations.

3D Blocking using Global Memory: The simplest imple-

mentation gmem_8x8x8 using only the global memory yields

the best performance on V100. With L1 data cache and shared

memory combined into a single unified memory block on the

V100 [43], we have a much larger data cache available on

92

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

Kernel Identifier Block Size Grid Size Registers
Per Thread

Achieved
Active
Warps

Achieved
Occupancy

Theoretical
Active
Warps

Theoretical
Occupancy

gmem 8x8x8 512 1,685,159 40 42.5 66.4 48.0 75.0
gmem 16x16x4 1,024 853,200 40 28.9 45.2 32.0 50.0
gmem 32x32x1 1,024 851,400 40 29.3 45.8 32.0 50.0

smem u 512 1,685,159 38 44.6 69.7 48.0 75.0
smem eta 1 512 1,685,159 40 42.4 66.3 48.0 75.0
smem eta 3 512 1,685,159 40 42.4 66.2 48.0 75.0

st smem 8x16 128 7,140 56 27.9 43.6 28.0 43.7
st smem 16x8 128 7,140 56 27.9 43.5 28.0 43.7

st smem 16x16 256 3,600 56 31.6 49.4 32.0 50.0
st reg shft 16x16 256 3,600 96 15.9 24.9 16.0 25.0
st reg shft 32x16 512 1,800 96 16.0 25.0 16.0 25.0
st reg shft 32x32 1,024 900 64 32.0 50.0 32.0 50.0
st ref fixed 16x16 256 3,600 78 23.9 37.4 24.0 37.5
st ref fixed 32x16 512 1,800 78 16.0 25.0 16.0 25.0
st ref fixed 32x32 1,024 900 64 32.0 50.0 32.0 50.0

TABLE IV: Characteristics of a 25-point stencil kernel for the interior region characteristics on V100.

Kernel Identifier FLOP
(x1013)

Achieved
Perfor-
mance

(GFLOPs)

L2
Trans-
actions
(x1012)

L2
Arith-
metic

Intensity

L2
Machine
Peak Per-
formance
(GFLOPs)

L2
Achieved
Percent-

age

DRAM
Trans-
actions
(x1011)

DRAM
Arith-
metic

Intensity

DRAM
Machine
Peak Per-
formance
(GFLOPs)

DRAM
Achieved

Per-
centage

gmem 8x8x8 4.453 770 1.79 0.78 2566 30.00% 7.26 1.92 1498 51.39%
gmem 16x16x4 4.453 485 2.45 0.57 1877 25.83% 6.67 2.08 1628 29.78%
gmem 32x32x1 4.453 142 13.90 0.10 330 42.95% 6.56 2.12 1656 8.57%

smem u 4.453 724 1.82 0.77 2531 28.60% 7.37 1.89 1474 49.11%
smem eta 1 4.453 756 1.82 0.76 2522 29.97% 7.31 1.90 1487 50.81%
smem eta 3 4.453 763 1.81 0.77 2535 30.10% 7.31 1.90 1488 51.30%

st smem 8x16 4.453 366 1.47 0.95 3130 11.68% 13.30 1.05 820 44.58%
st smem 16x8 4.453 692 1.17 1.19 3933 17.59% 7.74 1.80 1404 49.27%

st smem 16x16 4.453 742 1.04 1.34 4414 16.81% 6.97 2.00 1560 47.58%
st reg shft 16x16 4.453 630 1.20 1.16 3841 16.41% 7.22 1.93 1506 41.86%
st reg shft 32x16 4.453 682 0.94 1.47 4861 14.02% 6.94 2.00 1566 43.54%
st reg shft 32x32 4.453 442 1.67 0.83 2750 16.05% 15.50 0.90 701 62.95%
st reg fixed 16x16 4.453 673 1.18 1.18 3899 17.25% 7.71 1.80 1409 47.72%
st reg fixed 32x16 4.453 664 9.12 1.53 5043 13.17% 7.14 1.95 1522 43.62%
st reg fixed 32x32 4.453 703 1.09 1.27 4209 16.71% 9.08 1.53 1197 58.78%

TABLE V: Kernel Performance Characteristics on V100

the V100 than on previous generations of GPUs. Therefore,

when retrieving data from global memory with a good access

pattern, we can achieve very good performance.
Comparing the performance of the 3D kernel across GPU

generations, we notice its poor performance portability. It is

one of the slowest implementations on P100 and the NVS510.
We tried several variants of the global memory implemen-

tation that differ each others in terms of block size, from

smaller to larger, including gmem_4x4x4, gmem_8x8x4,

gmem_8x8x8, gmem_16x16x4, and gmem_32x32x1. Our

results show that, gmem_8x8x8 is the best among them. We

need to load all halos before performing stencil computations.

For blocks smaller than gmem_8x8x8, such as gmem_4x4x4
and gmem_8x8x4, the halo size for our 25-point stencil

dominates the actual data points. Therefore, more time is spent

on loading halos than points for the volume to be computed,

which hurts performance. In addition, smaller block sizes also

result in larger GPU grid size as we can see from Table IV,

which means more kernel launches. For the smaller blocks, the

additional overheads slow the overall execution. On the other

hand, we also see performance degradation for larger blocks,

gmem_16x16x4 and gmem_32x32x1. Their larger block

size results in a smaller grid size. However, both have low

theoretical and achieved occupancy. Table V shows that the 3D

kernels using larger blocks, especially gmem_32x32x1, incur

more L1 cache misses, which increases the L2 transactions

with a relative higher-latency loads.

In summary, the global memory implementations are the

simplest to program and need very little performance tuning.

With the right tile shape and using a good global memory

access pattern, on late-model GPU architectures, such as V100,

one can achieve amazingly good performance with little effort.

From a software engineering perspective, these implementa-

tions are easy to understand and have a low maintenance cost.

Shared memory: Table II shows that using shared memory

can boost performance. The performance gain is more signif-

icant on older generation GPUs, such as P100 and NVS510,

which is consistent with results in previous research.

Recall that smem_u is a high-order stencil while

93

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

(a) Device Performance vs L2 Arithmetic Intensity (b) Device Performance vs DRAM Arithmetic Intensity

Fig. 3: Roofline Performance on V100

smem_eta_1 and smem_eta_3 are not. From Table

II, we saw smem_u runs faster than smem_eta_1 and

smem_eta_3 on V100, but oppositely, it is slower on P100

and NVS510. We attribute this conflicting results to the

architectural changes in V100, where it combines the L1 data

cache with shared memory. As discussed previously, on V100,

with good access patterns for global memory, one can achieve

great performance with little effort. The overhead of using

shared memory on V100 in 3D blocking erases this gain. In

contrast, older generation GPUs do not have this new feature,

so shared memory provides more performance benefits than

its overhead. On older architectures, with high-order stencils,

such as smem_u, because we load larger-size blocks into

shared memory than low-order ones, such as smem_eta_1
and smem_eta_3, we see better performance.

For high-order stencils, which have a large halo size, it

is not hard to reach the shared memory limit. While shared

memory improves performance, the hardware limitation on

shared memory limits the potential of holding all data on

shared memory for high-order stencils which use large blocks.

Code Shape for 2.5D-Blockings: For implementations using

2.5D-blocking, we observe the larger the 2D plane, the better

the performance. There are two main reasons for this. First, a

larger 2D plane means a higher degree of concurrency. Second,

with a larger plane, the percentage of halo points fetched

into shared memory is smaller, which speeds up the overall

performance.

In addition, our results show that st_reg_shft_32x16
runs faster than st_reg_shft_16x32. From Table V,

we see more L2 transactions with st_reg_shft_16x32,

which in turn harms performance. Therefore, one should cut

the plane so that the x-dimension of the GPU’s thread block

assigned to the innermost dimension has a relatively larger

size.

Register Footprint in 2.5D-Blockings: When we evalu-

ate st_reg_shft_∗ implementations, the variants with

2D plane size of 1024, namely st_reg_shft_16x64,

st_reg_shft_32x32, and st_reg_shft_64x16, show

poor performance on V100. The performance degradation

is caused by register spilling. The maximum registers in a

blockthread is 64 ∗ 1024 = 65536. Because we have 1024
threads for these implementations, we can only have maximum

64 registers for each thread. If we do not explicitly specify

the register count to nvcc, it assigns 80 and 96 registers

to the PML and inner kernels, respectively. Running the

generated binaries for these register footprints yields incor-

rect results. To avoid this problem, we use compiler flag

-maxrregcount=64 to limit the maximum register usage

per thread. Unfortunately 64 registers are not enough to hold

all of the variables at the same time, causing register spilling.

The register shifting approach exacerbates register spilling due

to its high frequency of register access.

However, although register spilling occurs in the register

shifting kernels, for the st_fixed_reg_32x32 kernel, we

don’t see a performance degradation because the code uses

fixed registers with loop unrolling. Because the registers are

fixed, the frequency of register data movement is smaller than

for kernels using the register shifting approach. This allows

the performance impact of register spilling to be hidden by

other thread activities.

GPU Warp Occupancies: Table IV shows implementations

using 2.5D blocking in general have better theoretical and

achieved occupancies than the ones using 3D blocking.

Performance Portability: The best performing implemen-

tations on P100 and NVS510 come from 2.5D approaches.

Although they are not the best kernels on V100, they are

still in the fastest tier. Thus, if performance portability is

a concern, implementations using 2.5D blocking, such as

st_reg_fixed_32x32, are attractive.

94

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

Gaps to the Roofline Ceilings: Our interpretation of the

performance gaps are twofold:

First, although our current implementations realize a good

performance for high-order stencils with boundary conditions,

we see room for further performance tuning. We could im-

prove the arithmetic intensities by designing new GPU code

shapes, e.g., by employing the semi-stencil algorithm [14],

[15], which reduces data movement for high-order stencils,

or employing time-skewing to increase data reuse. While all

of our implementations were manually written in CUDA, we

could develop a new DSL approach or build a framework that

enables us to explore more sophisticated approaches.

Second, ERT uses simple micro-benchmarks to profile the

machines. In contrast, the acoustic isotropic model not only

uses high-order stencils with complex boundary conditions,

but also contains complicated logic with multiple statements.

Thus, while the roofline ceilings provide us a guide, the logic

of our complex kernels makes it difficult to hit the roofline

limit.

NVIDIA Optimization Insights: NVIDIA ran our kernels on

internal systems with either a V100 or A100 GPU and tuned

our kernels to improve memory hierarchy performance. Table

III shows measurements of our kernels before and after their

optimizations on both V100 and A100 GPUs. Their memory

hierarchy optimizations yielded speedups ranging from and

6.4% to 24.3% on a V100 and 12% to 43% on an A100.

Their optimization insights were the following:

First, cudaMallocHost allocates page-locked memory

on the host, and accelerates data copying between host and

device. Our original kernel used malloc to support several

programming models, including OpenMP and OpenACC, but

it was easily adjusted to employ this platform-specific alloca-

tion strategy.

Second, NVIDIA relocated our stencil coefficients to con-

stant memory. While accessing the coefficients in constant

memory itself may not improve performance, using constant

memory for stencil coefficients reduces kernel register foot-

prints, which in some cases enables larger number of threads

in a thread block, which improves warp utilization.

Third, to minimize the number of bytes being transferred to

and from memory, it is best to align a tile’s memory accesses

on cache line boundaries. To achieve this, padding can be

added to an array so that the length of each row is a multiple

of 128 bytes—the cache line size on NVIDIA GPUs. For our

stencil, due to boundary conditions, the kernels working on

the PML and inner regions can have conflicting alignment

requirements. The best approach seems to be adding lead

padding to the array so that the memory accessed by each

of the inner tiles is aligned to cache line boundaries. This is

best since most of the time and memory accesses are spent

applying the high-order stencil to the the inner region.

VI. CONCLUSIONS AND FUTURE WORK

This paper evaluated the performance of high-order stencils

with boundary conditions on four generations of NVIDIA

GPUs. Our experiments show that the key to performance for

a high-order stencil is to maximize utilization of GPU threads

by using the largest tile size possible without exceeding GPU

resource bounds. In addition, kernel implementations that

compute stencils directly from global-memory, despite being

the simplest, deliver the best performance on NVIDIA’s V100

and A100 GPUs. We observed that 2.5D streaming algorithms

deliver high performance and have the best performance

portability across NVIDIA GPU generations. Also, careful

alignment of tiles with cache lines improves performance.
We began our evaluation by computing 25-point stencil

algorithms over the entire data domain in a single kernel

launch. Inefficiency caused by branch divergence led us to

apply domain decomposition and compute the boundaries sep-

arately from the center region. While this improved efficiency,

having the regions separate impedes our ability to apply time

skewing along the streaming dimension for the 2.5D algorithm.

We plan to reintegrate boundary computations with the inner

region to evaluate 3.5D algorithms on high-order stencils

that apply time skewing along the streaming dimension. In

addition, we plan to explore whether applying the semi-

stencil algorithm [14] along the streaming dimension improves

performance by reducing the memory hierarchy footprint of

a block’s stencil calculations and increasing the arithmetic

intensity of high-order kernels.
In the near future, we will incorporate NVIDIA’s optimiza-

tion insights for improving cache utilization into all of our

existing implementations and then compare and analyze their

performance impacts on V100 and P100 machines. Once we

have direct access to an NVIDIA A100, we plan to experiment

with the range of kernels to assess performance portability of

kernels to A100 GPUs. We will also explore the additional

benefits provided by using the float4 type.
Furthermore, we plan to expand the scope of our evaluation

to explore the performance of various high-order stencil im-

plementations on leading-edge GPUs from other vendors, as

soon as we can gain access to them and results on them are

not embargoed.

ACKNOWLEDGMENT

This work was supported in part by a contract from

Total E&P Research & Technology USA, LLC. We thank

Guillaume Thomas-Collignon and Ken Hester from NVIDIA

for performing the experiments on A100 and providing opti-

mization insights. We thank Keren Zhou from Rice University

for reviewing the drafts of this paper and helping us use

his emerging GPU Performance Advisor tool, which offered

insights for tuning some of the kernels we studied.

REFERENCES

[1] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
Oblivious Algorithms,” in Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, USA, Oct. 1999, p. 285.

[2] M. Frigo and V. Strumpen, “Cache oblivious stencil computations,” in
Proceedings of the 19th annual international conference on Supercom-
puting, Cambridge, Massachusetts, Jun. 2005, pp. 361-366.

[3] M. Frigo and V. Strumpen, “The cache complexity of multithreaded
cache oblivious algorithms,” in Proceedings of the eighteenth annual
ACM symposium on Parallelism in algorithms and architectures, Cam-
bridge, Massachusetts, USA, Jul. 2006, pp. 271-280.

95

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

[4] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel, “Cache oblivious
parallelograms in iterative stencil computations,” in Proceedings of
the 24th ACM International Conference on Supercomputing, Tsukuba,
Ibaraki, Japan, Jun. 2010, pp. 49-59.

[5] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C.
E. Leiserson, “The pochoir stencil compiler,” in Proceedings of the
twenty-third annual ACM symposium on Parallelism in algorithms and
architectures, San Jose, California, USA, Jun. 2011, pp. 117-128.

[6] D. Wonnacott, “Using time skewing to eliminate idle time due to
memory bandwidth and network limitations,” in Proceedings 14th Inter-
national Parallel and Distributed Processing Symposium. IPDPS 2000,
May 2000, pp. 171-180.

[7] D. Wonnacott, “Achieving Scalable Locality with Time Skewing,” Inter-
national Journal of Parallel Programming, vol. 30, no. 3, pp. 181-221,
Jun. 2002.

[8] G Jin, J. Mellor-Crummey, and R. Fowler, “Increasing Temporal Locality
with Skewing and Recursive Blocking,” in SC01: Proceedings of the
2001 ACM/IEEE Conference on Supercomputing, Nov. 2001, pp. 57.

[9] J. McCalpin and D. Wonnacott, “Time Skewing: A Value-Based Ap-
proach to Optimizing for Memory Locality,” 1998.

[10] Y. Song and Z. Li, “New tiling techniques to improve cache temporal
locality,” SIGPLAN Not., vol. 34, no. 5, pp. 215-228, May 1999.

[11] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A.
Rountev, and P. Sadayappan, “Effective automatic parallelization of
stencil computations,” SIGPLAN Not., vol. 42, no. 6, pp. 235-244, Jun.
2007.

[12] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance
code generation for stencil computations on GPU architectures,” in Pro-
ceedings of the 26th ACM international conference on Supercomputing,
San Servolo Island, Venice, Italy, Jun. 2012, pp. 311-320.

[13] T. Grosser, A. Cohen, P. H. J. Kelly, J. Ramanujam, P. Sadayappan,
and S. Verdoolaege, “Split tiling for GPUs: automatic parallelization
using trapezoidal tiles,” in Proceedings of the 6th Workshop on General
Purpose Processor Using Graphics Processing Units, Houston, Texas,
USA, Mar. 2013, pp. 24-31.

[14] R. de la Cruz, M. Araya-Polo, and J. M. Cela, “Introducing the Semi-
stencil Algorithm,” in Parallel Processing and Applied Mathematics,
Berlin, Heidelberg, 2010, pp. 496-506.

[15] R. de la Cruz and M. Araya-Polo, “Algorithm 942: Semi-Stencil,” ACM
Trans. Math. Softw., vol. 40, no. 3, p. 23:1-23:39, Apr. 2014.

[16] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-D
Blocking Optimization for Stencil Computations on Modern CPUs and
GPUs,” in SC 10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, Nov. 2010, pp. 1-13.

[17] P. Micikevicius, “3D finite difference computation on GPUs using
CUDA,” in Proceedings of 2nd Workshop on General Purpose Process-
ing on Graphics Processing Units, Washington, D.C., USA, Mar. 2009,
pp. 79-84.

[18] K. Matsumura, H. R. Zohouri, M. Wahib, T. Endo, and S. Matsuoka,
“AN5D: automated stencil framework for high-degree temporal blocking
on GPUs,” in Proceedings of the 18th ACM/IEEE International Sym-
posium on Code Generation and Optimization, San Diego, CA, USA,
Feb. 2020, pp. 199-211.

[19] P. S. Rawat, M. Vaidya, A. Sukumaran-Rajam, A. Rountev, L.-N.
Pouchet, and P. Sadayappan, “On Optimizing Complex Stencils on
GPUs,” in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2019, pp. 641-652.

[20] P. S. Rawat, F. Rastello, A. Sukumaran-Rajam, L.-N. Pouchet, A.
Rountev, and P. Sadayappan, “Register optimizations for stencils on
GPUs,” SIGPLAN Not., vol. 53, no. 1, pp. 168-182, Feb. 2018.

[21] P. Rawat et al., “SDSLc: a multi-target domain-specific compiler for
stencil computations,” in Proceedings of the 5th International Workshop
on Domain-Specific Languages and High-Level Frameworks for High
Performance Computing, Austin, Texas, Nov. 2015, pp. 1-10.

[22] P. S. Rawat et al., “Domain-Specific Optimization and Generation of
High-Performance GPU Code for Stencil Computations,” Proceedings
of the IEEE, vol. 106, no. 11, pp. 1902-1920, Nov. 2018.

[23] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A prac-
tical automatic polyhedral parallelizer and locality optimizer,” SIGPLAN
Not., vol. 43, no. 6, pp. 101-113, Jun. 2008.

[24] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil com-
putations to maximize parallelism,” in SC 12: Proceedings of the

International Conference on High Performance Computing, Networking,
Storage and Analysis, Nov. 2012, pp. 1-11.

[25] M. Steuwer, T. Remmelg, and C. Dubach, “LIFT: A functional data-
parallel IR for high-performance GPU code generation,” in 2017
IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO), Feb. 2017, pp. 74-85.

[26] M. Lücke, M. Steuwer, and A. Smith, “A functional pattern-based
language in mlir,” p. 6, 2020.

[27] O. Fuhrer et al., “Towards a performance portable, architecture agnostic
implementation strategy for weather and climate models,” Supercomput.
Front. Innov.: Int. J., vol. 1, no. 1, pp. 45-62, Apr. 2014.

[28] J.-M. Gorius and T. Grosser, “Modeling Stencils in a Multi-Level
Intermediate Representation,” p. 15, 2019.

[29] T. Gysi et al., “Domain-Specific Multi-Level IR Rewriting for GPU,”
arXiv:2005.13014 [cs], May 2020, Accessed: Jul. 19, 2020. [Online].
Available: http://arxiv.org/abs/2005.13014.

[30] R. Baghdadi et al., “PENCIL: A Platform-Neutral Compute Intermediate
Language for Accelerator Programming,” in 2015 International Confer-
ence on Parallel Architecture and Compilation (PACT), Oct. 2015, pp.
138-149.

[31] R. Baghdadi et al., “Tiramisu: a polyhedral compiler for expressing fast
and portable code,” in Proceedings of the 2019 IEEE/ACM International
Symposium on Code Generation and Optimization, Washington, DC,
USA, Feb. 2019, pp. 193-205, Accessed: Jul. 20, 2020. [Online].

[32] M. Christen, O. Schenk, and H. Burkhart, “PATUS: A Code Generation
and Autotuning Framework for Parallel Iterative Stencil Computations
on Modern Microarchitectures,” in 2011 IEEE International Parallel
Distributed Processing Symposium, May 2011, pp. 676-687.

[33] M. Louboutin et al., “Devito (v3.1.0): an embedded domain-specific lan-
guage for finite differences and geophysical exploration,” Geoscientific
Model Development, vol. 12, no. 3, pp. 1165-1187, Mar. 2019.

[34] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S.
Amarasinghe, “Halide: a language and compiler for optimizing paral-
lelism, locality, and recomputation in image processing pipelines,” in
Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Seattle, Washington, USA, Jun.
2013, pp. 519-530.

[35] J. Meng, A. Atle, H. Calandra, and M. Araya-Polo, “Minimod: A Finite
Difference solver for Seismic Modeling,” Jul. 2020, Accessed: Aug. 15,
2020. [Online]. Available: https://arxiv.org/abs/2007.06048v1.

[36] D. Komatitsch, J. Tromp, “A perfectly matched layer absorbing boundary
condition for the second-order seismic wave equation,” Geophysical
Journal International, volume 154, number 1, pp. 146-153, July 2003.

[37] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65-76, Apr. 2009.

[38] N. Ding and S. Williams, “An Instruction Roofline Model for GPUs,” in
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), Nov. 2019, pp. 7-18.

[39] C. Yang, “Hierarchical Roofline Analysis on GPUs,” ECP Annual
Meeting, February 2020,

[40] J. Mellor-Crummey, R. Fowler, and D. Whalley, “Tools for application-
oriented performance tuning,” in Proceedings of the 15th international
conference on Supercomputing, Sorrento, Italy, Jun. 2001, pp. 154-165.

[41] K. Zhou, M. Krentel, and J. Mellor-Crummey, “A tool for top-down
performance analysis of GPU-accelerated applications,” in Proceedings
of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, San Diego, California, Feb. 2020, pp. 415-416.

[42] R. Sai, J. Mellor-Crummey, X. Meng, M. Araya-Polo, and J. Meng,
“Accelerating High-Order Stencils on GPUs,” Sept. 2020, Accessed:
Sept. 11, 2020. [Online]. Available: https://arxiv.org/abs/2009.04619

[43] NVIDIA, “NVIDIA Tesla V100 GPU Architecture,” August 2017.

96

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

APPENDIX: ARTIFACT DESCRIPTION/ARTIFACT EVALUATION

SUMMARY OF THE EXPERIMENTS REPORTED

We manually wrote a collection of implementations of a 25-points star shaped stencil in CUDA along with code to apply

the boundary conditions. We evaluated our implementations on several systems with generations of NVIDIA GPUs. We use a

variety of tools, such as HPCToolkit, Nsight Compute, and Empirical Roofline Toolkit to evaluate our performance.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software artifacts are NOT maintained in a public repository or are NOT

available under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hardware artifacts.

Data Artifact Availability: There are no author-created data artifacts.

Proprietary Artifacts: There are associated proprietary artifacts that are not created by the authors. Some author-created

artifacts are proprietary.

URL/DOI List: https://github.com/rsrice/PMBS2020-Artifact

BASELINE EXPERIMENTAL SETUP, AND MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: IBM POWER9 + NVIDIA TESLA V100

Operating systems and versions: Red Hat Enterprise Linux Server 7.7

Compilers and versions: NVCC 10.2.89

CPLUS INCLUDE PATH=/ home / USER / r e l e a s e−p l a n n i n g / openmp / openmp− i n s t a l l / i n c l u d e : /

home / USER / s t a g i n g / l lvm / llvm −10.0.0− r c 3 / i n c l u d e : / u s r / l o c a l / cuda −11 .0 / e x t r a s /

CUPTI / i n c l u d e : / u s r / l o c a l / cuda −11 .0 / i n c l u d e

MANPATH=/ home / USER / o p t / p g i / l i n u x p o w e r / 2 0 1 9 / mpi / openmpi −3 . 1 . 3 / s h a r e / man : / home /USER

/ o p t / p g i / l i n u x p o w e r / 1 9 . 1 0 / man : / p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc

−4 . 8 . 5 / z l i b −1.2.11−4 v 3 t i c y y k h 2 x c g w 5 f z l t j r f u x k x 7 i p q h / s h a r e / man : / p r o j e c t s / spack /

pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / gcc −7.3.0− ploqhwmybyd3wojblviucugocg3w7rdo /

s h a r e / man : / o p t / p u p p e t l a b s / p up pe t / s h a r e / man

XDG SESSION ID=16727

HOSTNAME=HOSTNAME. cs . r i c e . edu

SPACK ROOT=/ home / USER / spack

SELINUX ROLE REQUESTED=

SHELL=/ b i n / bash

TERM= xterm

HISTSIZE=1000

SSH CLIENT = 1 6 8 . 7 . 2 2 . 2 3 36669 22

LIBRARY PATH=/ home / USER / r e l e a s e−p l a n n i n g / openmp / openmp− i n s t a l l / l i b : / home / USER /

s t a g i n g / l lvm / llvm −10.0.0− r c 3 / l i b e x e c : / home / USER / s t a g i n g / l lvm / llvm −10.0.0− r c 3 /

l i b 6 4 : / home / USER / s t a g i n g / l lvm / llvm −10.0.0− r c 3 / l i b : / u s r / l o c a l / cuda −11 .0 / l i b 6 4 : /

p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / z l i b −1.2.11−4

v 3 t i c y y k h 2 x c g w 5 f z l t j r f u x k x 7 i p q h / l i b : / p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e /

gcc −4 . 8 . 5 / gcc −7.3.0− ploqhwmybyd3wojblviucugocg3w7rdo / l i b 6 4 : / p r o j e c t s / spack /

pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / gcc −7.3.0− ploqhwmybyd3wojblviucugocg3w7rdo /

l i b

SELINUX USE CURRENT RANGE=

QTDIR=/ u s r / l i b 6 4 / qt −3.3

QTINC=/ u s r / l i b 6 4 / qt −3 .3 / i n c l u d e

SSH TTY=/ dev / p t s / 1 8

QT GRAPHICSSYSTEM CHECKED=1

USER=USER

LS COLORS= r s =0: d i = 0 1 ; 3 4 : l n = 0 1 ; 3 6 :mh=00: p i = 4 0 ; 3 3 : so = 0 1 ; 3 5 : do = 0 1 ; 3 5 : bd = 4 0 ; 3 3 ; 0 1 : cd

= 4 0 ; 3 3 ; 0 1 : o r = 4 0 ; 3 1 ; 0 1 : mi = 0 1 ; 0 5 ; 3 7 ; 4 1 : su = 3 7 ; 4 1 : sg = 3 0 ; 4 3 : ca = 3 0 ; 4 1 : tw = 3 0 ; 4 2 : ow

= 3 4 ; 4 2 : s t = 3 7 ; 4 4 : ex = 0 1 ; 3 2 : * . t a r = 0 1 ; 3 1 : * . t g z = 0 1 ; 3 1 : * . a r c = 0 1 ; 3 1 : * . a r j = 0 1 ; 3 1 : * . t a z

= 0 1 ; 3 1 : * . l h a = 0 1 ; 3 1 : * . l z 4 = 0 1 ; 3 1 : * . l z h = 0 1 ; 3 1 : * . lzma = 0 1 ; 3 1 : * . t l z = 0 1 ; 3 1 : * . t x z

= 0 1 ; 3 1 : * . t z o = 0 1 ; 3 1 : * . t 7 z = 0 1 ; 3 1 : * . z i p = 0 1 ; 3 1 : * . z = 0 1 ; 3 1 : * . Z = 0 1 ; 3 1 : * . dz = 0 1 ; 3 1 : * . gz

= 0 1 ; 3 1 : * . l r z = 0 1 ; 3 1 : * . l z = 0 1 ; 3 1 : * . l z o = 0 1 ; 3 1 : * . xz = 0 1 ; 3 1 : * . bz2 = 0 1 ; 3 1 : * . bz = 0 1 ; 3 1 : * .

97

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

t b z = 0 1 ; 3 1 : * . t b z 2 = 0 1 ; 3 1 : * . t z = 0 1 ; 3 1 : * . deb = 0 1 ; 3 1 : * . rpm = 0 1 ; 3 1 : * . j a r = 0 1 ; 3 1 : * . war

= 0 1 ; 3 1 : * . e a r = 0 1 ; 3 1 : * . s a r = 0 1 ; 3 1 : * . r a r = 0 1 ; 3 1 : * . a l z = 0 1 ; 3 1 : * . ace = 0 1 ; 3 1 : * . zoo

= 0 1 ; 3 1 : * . c p i o = 0 1 ; 3 1 : * . 7 z = 0 1 ; 3 1 : * . r z = 0 1 ; 3 1 : * . cab = 0 1 ; 3 1 : * . j p g = 0 1 ; 3 5 : * . j p e g

= 0 1 ; 3 5 : * . g i f = 0 1 ; 3 5 : * . bmp = 0 1 ; 3 5 : * . pbm = 0 1 ; 3 5 : * . pgm = 0 1 ; 3 5 : * . ppm = 0 1 ; 3 5 : * . t g a

= 0 1 ; 3 5 : * . xbm = 0 1 ; 3 5 : * . xpm = 0 1 ; 3 5 : * . t i f = 0 1 ; 3 5 : * . t i f f = 0 1 ; 3 5 : * . png = 0 1 ; 3 5 : * . svg

= 0 1 ; 3 5 : * . svgz = 0 1 ; 3 5 : * . mng = 0 1 ; 3 5 : * . pcx = 0 1 ; 3 5 : * . mov = 0 1 ; 3 5 : * . mpg = 0 1 ; 3 5 : * . mpeg

= 0 1 ; 3 5 : * . m2v = 0 1 ; 3 5 : * . mkv = 0 1 ; 3 5 : * . webm = 0 1 ; 3 5 : * . ogm = 0 1 ; 3 5 : * . mp4 = 0 1 ; 3 5 : * . m4v

= 0 1 ; 3 5 : * . mp4v = 0 1 ; 3 5 : * . vob = 0 1 ; 3 5 : * . q t = 0 1 ; 3 5 : * . nuv = 0 1 ; 3 5 : * .wmv= 0 1 ; 3 5 : * . a s f

= 0 1 ; 3 5 : * . rm = 0 1 ; 3 5 : * . rmvb = 0 1 ; 3 5 : * . f l c = 0 1 ; 3 5 : * . a v i = 0 1 ; 3 5 : * . f l i = 0 1 ; 3 5 : * . f l v

= 0 1 ; 3 5 : * . g l = 0 1 ; 3 5 : * . d l = 0 1 ; 3 5 : * . x c f = 0 1 ; 3 5 : * . xwd = 0 1 ; 3 5 : * . yuv = 0 1 ; 3 5 : * . cgm

= 0 1 ; 3 5 : * . emf = 0 1 ; 3 5 : * . axv = 0 1 ; 3 5 : * . anx = 0 1 ; 3 5 : * . ogv = 0 1 ; 3 5 : * . ogx = 0 1 ; 3 5 : * . aac

= 0 1 ; 3 6 : * . au = 0 1 ; 3 6 : * . f l a c = 0 1 ; 3 6 : * . mid = 0 1 ; 3 6 : * . mid i = 0 1 ; 3 6 : * . mka = 0 1 ; 3 6 : * . mp3

= 0 1 ; 3 6 : * . mpc = 0 1 ; 3 6 : * . ogg = 0 1 ; 3 6 : * . r a = 0 1 ; 3 6 : * . wav = 0 1 ; 3 6 : * . axa = 0 1 ; 3 6 : * . oga

= 0 1 ; 3 6 : * . spx = 0 1 ; 3 6 : * . x s p f = 0 1 ; 3 6 :

LD LIBRARY PATH=/ home / USER / r e l e a s e−p l a n n i n g / openmp / openmp− i n s t a l l / l i b : / home / USER /

r e l e a s e−p l a n n i n g / h p c t o o l k i t / h p c t o o l k i t − i n s t a l l / l i b / h p c t o o l k i t / ex t− l i b s : / home /

USER / r e l e a s e−p l a n n i n g / h p c t o o l k i t / h p c t o o l k i t − i n s t a l l / l i b / h p c t o o l k i t : / home / USER /

s t a g i n g / l lvm / llvm −10.0.0− r c 3 / l i b e x e c : / home / USER / s t a g i n g / l lvm / llvm −10.0.0− r c 3 /

l i b 6 4 : / home / USER / s t a g i n g / l lvm / llvm −10.0.0− r c 3 / l i b : / home / USER / o p t / p g i /

l i n u x p o w e r / 2 0 1 9 / mpi / openmpi −3 . 1 . 3 / l i b : / home / USER / o p t / p g i / l i n u x p o w e r / 1 9 . 1 0 / l i b

: / u s r / l o c a l / cuda −11 .0 / l i b 6 4 : / p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc

−4 . 8 . 5 / z l i b −1.2.11−4 v 3 t i c y y k h 2 x c g w 5 f z l t j r f u x k x 7 i p q h / l i b : / p r o j e c t s / spack / pkgs /

l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / gcc −7.3.0− ploqhwmybyd3wojblviucugocg3w7rdo / l i b 6 4

: / p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / gcc −7.3.0−
ploqhwmybyd3wojblviucugocg3w7rdo / l i b

CPATH=/ p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / z l i b −1.2.11−4

v 3 t i c y y k h 2 x c g w 5 f z l t j r f u x k x 7 i p q h / i n c l u d e : / p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−
p p c 6 4 l e / gcc −4 . 8 . 5 / gcc −7.3.0− ploqhwmybyd3wojblviucugocg3w7rdo / i n c l u d e

CPP=/ b i n / cpp

PGI =/ home / USER / o p t / p g i

PATH=/ home / USER / r e l e a s e−p l a n n i n g / h p c t o o l k i t / h p c t o o l k i t − i n s t a l l / l i b e x e c / h p c t o o l k i t

: / home / USER / r e l e a s e−p l a n n i n g / h p c t o o l k i t / h p c t o o l k i t − i n s t a l l / b i n : / home / USER /

s t a g i n g / l lvm / llvm −10.0.0− r c 3 / b i n : / home / USER / o p t / l lvm / b i n : / home / USER / o p t / go / b i n

: / home / USER / u s r / l o c a l / b i n : / home / USER / cs−r o o f l i n e − t o o l k i t /

E m p i r i c a l R o o f l i n e T o o l − 1 . 1 . 0 : / home / USER / spack / b i n : / home / USER / o p t / p g i /

l i n u x p o w e r / 2 0 1 9 / mpi / openmpi −3 . 1 . 3 / b i n : / home / USER / o p t / p g i / l i n u x p o w e r / 1 9 . 1 0 / b i n

: / u s r / l o c a l / cuda −11 .0 / b i n : / p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 /

cmake−3.12.4− o5rgr6d6nl7hs746vk5l jmmr4wffmgcw / b i n : / p r o j e c t s / spack / pkgs / l i n u x−
r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / gcc −7.3.0− ploqhwmybyd3wojblviucugocg3w7rdo / b i n : / u s r /

l i b 6 4 / qt −3 .3 / b i n : / u s r / l o c a l / b i n : / u s r / b i n : / u s r / l o c a l / s b i n : / u s r / s b i n : / o p t /

p u p p e t l a b s / b i n : / home / USER / . l o c a l / b i n : / home / USER / b i n

MAIL=/ v a r / s p o o l / ma i l / USER

=/ u s r / b i n / env

C INCLUDE PATH=/ home / USER / r e l e a s e −p l a n n i n g / openmp / openmp− i n s t a l l / i n c l u d e : / home /

USER / s t a g i n g / l lvm / llvm −10.0.0− r c 3 / i n c l u d e :

PWD=/ home / USER / Author−K i t

F90 =/ home / USER / o p t / p g i / l i n u x p o w e r / 1 9 . 1 0 / b i n / p g f o r t r a n

LMFILES =/ p r o j e c t s / spack / modules / l i n u x−r h e l 7−p p c 6 4 l e / gcc −7.3.0− gcc −4.8.5−ploqhwm

: / p r o j e c t s / spack / modules / l i n u x−r h e l 7−p p c 6 4 l e / cmake−3.12.4− gcc −4.8.5− o 5 r g r 6 d : /

p r o j e c t s / spack / modules / l i n u x−r h e l 7−p p c 6 4 l e / z l i b −1.2.11− gcc −4.8.5−4 v 3 t i c y : / u s r /

l o c a l / modules / / cuda / 1 1 . 0 : / home / USER / o p t / p g i / m o d u l e f i l e s / p g i / 1 9 . 1 0 : / home / USER /

o p t / p g i / m o d u l e f i l e s / openmpi / 3 . 1 . 3 / 2 0 1 9 : / home / USER / modules / h p c t o o l k i t : / home /

USER / modules / openmp

CUDA VISIBLE DEVICES=3

LANG=en US . UTF−8

98

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

MODULEPATH=/ home / USER / modules : / home / USER / spack / s h a r e / spack / modules / l i n u x−r h e l 7−
power9 le : / home / USER / o p t / p g i / m o d u l e f i l e s : / u s r / l o c a l / modules / : / p r o j e c t s / spack /

modules / l i n u x−r h e l 7−p p c 6 4 l e : / u s r / s h a r e / Modules / m o d u l e f i l e s : / e t c / m o d u l e f i l e s

LOADEDMODULES=gcc −7.3.0− gcc −4.8.5−ploqhwm : cmake−3.12.4− gcc −4.8.5− o 5 r g r 6 d : z l i b

−1.2.11− gcc −4.8.5−4 v 3 t i c y : cuda / 1 1 . 0 : p g i / 1 9 . 1 0 : openmpi / 3 . 1 . 3 / 2 0 1 9 : h p c t o o l k i t :

openmp

SELINUX LEVEL REQUESTED=

F77 =/ home / USER / o p t / p g i / l i n u x p o w e r / 1 9 . 1 0 / b i n / p g f o r t r a n

HISTCONTROL= i g n o r e d u p s

CXX=/ home / USER / o p t / p g i / l i n u x p o w e r / 1 9 . 1 0 / b i n / pgc++

TOT C=/ home / USER / HPC ProgrammingModels / code / Minimig C

HOME=/ home / USER

SHLVL=2

FC=/ home / USER / o p t / p g i / l i n u x p o w e r / 1 9 . 1 0 / b i n / p g f o r t r a n

LOGNAME=USER

QTLIB =/ u s r / l i b 6 4 / qt −3 .3 / l i b

SSH CONNECTION= 1 6 8 . 7 . 2 2 . 2 3 36669 1 2 8 . 4 2 . 1 2 8 . 3 0 22

XDG DATA DIRS=/ home / USER / . l o c a l / s h a r e / f l a t p a k / e x p o r t s / s h a r e : / v a r / l i b / f l a t p a k /

e x p o r t s / s h a r e : / u s r / l o c a l / s h a r e : / u s r / s h a r e

MODULESHOME=/ u s r / s h a r e / Modules

LESSOPEN = | | / u s r / b i n / l e s s p i p e . sh %s

PKG CONFIG PATH=/ p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / z l i b −1.2.11−4

v 3 t i c y y k h 2 x c g w 5 f z l t j r f u x k x 7 i p q h / l i b / p k g c o n f i g

ACLOCAL PATH=/ p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / cmake−3.12.4−
o5rgr6d6nl7hs746vk5l jmmr4wffmgcw / s h a r e / a c l o c a l

XDG RUNTIME DIR=/ run / u s e r /14742

CC=/ home / USER / o p t / p g i / l i n u x p o w e r / 1 9 . 1 0 / b i n / pgcc

CMAKE PREFIX PATH=/ p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / z l i b

−1.2.11−4 v 3 t i c y y k h 2 x c g w 5 f z l t j r f u x k x 7 i p q h / : / p r o j e c t s / spack / pkgs / l i n u x−r h e l 7−
p p c 6 4 l e / gcc −4 . 8 . 5 / cmake−3.12.4− o5rgr6d6nl7hs746vk5l jmmr4wffmgcw / : / p r o j e c t s /

spack / pkgs / l i n u x−r h e l 7−p p c 6 4 l e / gcc −4 . 8 . 5 / gcc −7.3.0−
ploqhwmybyd3wojblviucugocg3w7rdo /

BASH FUNC module () = () { e v a l ‘ / u s r / b i n / modulecmd bash $ * ‘

}
BASH FUNC spack () = () { i f [−n ” ${LD LIBRARY PATH−}”] ; t h e n

e x p o r t SPACK LD LIBRARY PATH=$LD LIBRARY PATH ;

f i ;

i f [−n ” ${DYLD LIBRARY PATH−}”] ; t h e n

e x p o r t SPACK DYLD LIBRARY PATH=$DYLD LIBRARY PATH ;

f i ;

i f [−n ” ${ZSH VERSION:−}”] ; t h e n

e m u l a t e −L sh ;

f i ;

s p f l a g s = ” ” ;

w h i l e [! −z ${1+x}] && [” ${1#−}” != ” ${1}”] ; do

s p f l a g s =” $ s p f l a g s $1 ” ;

s h i f t ;

done ;

i f [−n ” $ s p f l a g s ”] && [” ${ s p f l a g s #*h}” != ” ${ s p f l a g s }”] | | [” ${
s p f l a g s #*V}” != ” ${ s p f l a g s }”] ; t h e n

command spack $ s p f l a g s ”$@” ;

r e t u r n ;

f i ;

sp subcommand = ” ” ;

i f [! −z ${1+x}] ; t h e n

sp subcommand =” $1 ” ;

99

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

s h i f t ;

f i ;

c a s e $ sp subcommand i n

” cd ”)

s p a r g = ” ” ;

i f [−n ” $1 ”] ; t h e n

s p a r g =” $1 ” ;

s h i f t ;

f i ;

i f [” $ s p a r g ” = ”−h ”] | | [” $ s p a r g ” = ”−−h e l p ”] ; t h e n

command spack cd −h ;

e l s e

LOC=”$ (spack l o c a t i o n $ s p a r g ”$@”) ” ;

i f [−d ”$LOC”] ; t h e n

cd ”$LOC ” ;

e l s e

r e t u r n 1 ;

f i ;

f i ;

r e t u r n

; ;

” env ”)

s p a r g = ” ” ;

i f [−n ” $1 ”] ; t h e n

s p a r g =” $1 ” ;

s h i f t ;

f i ;

i f [” $ s p a r g ” = ”−h ”] | | [” $ s p a r g ” = ”−−h e l p ”] ; t h e n

command spack env −h ;

e l s e

c a s e $ s p a r g i n

a c t i v a t e)

a =”$@” ;

i f [−z ${1+x}] | | [” ${ a#*−−sh }” != ” $ a ”] | | [” ${ a#*−−csh }” != ” $ a ”] | |
[” ${ a#*−h}” != ” $ a ”] ; t h e n

command spack env a c t i v a t e ”$@” ;

e l s e

e v a l $ (command spack $ s p f l a g s env a c t i v a t e −−sh ”$@”) ;

f i

; ;

d e a c t i v a t e)

a =”$@” ;

i f [” ${ a#*−−sh }” != ” $ a ”] | | [” ${ a#*−−csh }” != ” $ a ”] ; t h e n

command spack env d e a c t i v a t e ”$@” ;

e l s e

i f [−n ” $ *”] ; t h e n

command spack env d e a c t i v a t e −h ;

e l s e

e v a l $ (command spack $ s p f l a g s env d e a c t i v a t e −−sh) ;

f i ;

f i

; ;

*)

command spack env $ s p a r g ”$@”

; ;

e s a c ;

100

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

f i ;

r e t u r n

; ;

” l o a d ” | ” u n l o a d ”)

a =” $@” ;

i f [” ${ a #* −−sh }” != ” $ a ”] | | [” ${ a #* −−csh }” != ” $ a ”] | | [” ${ a #* −h}”

!= ” $ a ”] | | [” ${ a #* −−h e l p }” != ” $ a ”] ; t h e n

command spack $ s p f l a g s $ sp subcommand ”$@” ;

e l s e

e v a l $ (command spack $ s p f l a g s $ sp subcommand −−sh ”$@” | |
echo ” r e t u r n 1 ”) ;

f i

; ;

*)

command spack $ s p f l a g s $ sp subcommand ”$@”

; ;

e s a c

}
+ l s b r e l e a s e −a

LSB V e r s i o n : : core −4.1− n oa rc h : core −4.1− p p c 6 4 l e : cxx−4.1− n o a r c h : cxx−4.1−
p p c 6 4 l e : desk top −4.1− noa rch : desk top −4.1− p p c 6 4 l e : l a n g u a g e s −4.1− n o a r c h : l a n g u a g e s

−4.1− p p c 6 4 l e : p r i n t i n g −4.1− n o a r c h : p r i n t i n g −4.1− p p c 6 4 l e

D i s t r i b u t o r ID : R e d H a t E n t e r p r i s e S e r v e r

D e s c r i p t i o n : Red Hat E n t e r p r i s e Linux S e r v e r r e l e a s e 7 . 7 (Maipo)

R e l e a s e : 7 . 7

Codename : Maipo

+ uname −a

Linux HOSTNAME. cs . r i c e . edu 4 . 1 4 . 0 −1 1 5 . 1 6 . 1 . e l 7 a . p p c 6 4 l e #1 SMP Wed Nov 27

1 8 : 0 1 : 4 2 UTC 2019 p p c 6 4 l e p p c 6 4 l e p p c 6 4 l e GNU/ Linux

+ l s c p u

A r c h i t e c t u r e : p p c 6 4 l e

Byte Order : L i t t l e Endian

CPU(s) : 160

On− l i n e CPU(s) l i s t : 0−159

Thread (s) p e r c o r e : 4

Core (s) p e r s o c k e t : 20

S o c k e t (s) : 2

NUMA node (s) : 6

Model : 2 . 2 (pvr 004 e 1202)

Model name : POWER9, a l t i v e c s u p p o r t e d

CPU max MHz: 3800 .0000

CPU min MHz: 2300 .0000

L1d cache : 32K

L1i cache : 32K

L2 cache : 512K

L3 cache : 10240K

NUMA node0 CPU(s) : 0−79

NUMA node8 CPU(s) : 80−159

NUMA node252 CPU(s) :

NUMA node253 CPU(s) :

NUMA node254 CPU(s) :

NUMA node255 CPU(s) :

+ c a t / p roc / meminfo

MemTotal : 261819328 kB

MemFree : 173085248 kB

MemAvailable : 254032704 kB

101

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

B u f f e r s : 2361536 kB

Cached : 75190400 kB

SwapCached : 24192 kB

A c t i v e : 49405056 kB

I n a c t i v e : 29230144 kB

A c t i v e (anon) : 388480 kB

I n a c t i v e (anon) : 1437952 kB

A c t i v e (f i l e) : 49016576 kB

I n a c t i v e (f i l e) : 27792192 kB

U n e v i c t a b l e : 0 kB

Mlocked : 0 kB

SwapTota l : 1540032 kB

SwapFree : 1395008 kB

D i r t y : 0 kB

Wr i t eback : 0 kB

AnonPages : 1061376 kB

Mapped : 484672 kB

Shmem : 743104 kB

Sl ab : 8112832 kB

S R e c l a i m a b l e : 5321472 kB

SUnrec la im : 2791360 kB

K e r n e l S t a c k : 28208 kB

P a g e T a b l e s : 21568 kB

NFS Unstable : 0 kB

Bounce : 0 kB

WritebackTmp : 0 kB

CommitLimit : 132449664 kB

Committed AS : 3442432 kB

V m a l l o c T o t a l : 549755813888 kB

VmallocUsed : 0 kB

VmallocChunk : 0 kB

HardwareCor rup ted : 0 kB

AnonHugePages : 0 kB

ShmemHugePages : 0 kB

ShmemPmdMapped : 0 kB

CmaTotal : 6717440 kB

CmaFree : 5500096 kB

HugePages Tota l : 0

HugePages Free : 0

HugePages Rsvd : 0

HugePages Surp : 0

Hugepages i ze : 2048 kB

+ i n x i −F −c0

. / c o l l e c t e n v i r o n m e n t . sh : l i n e 1 4 : i n x i : command n o t found

+ l s b l k −a

NAME MAJ: MIN RM SIZE RO TYPE MOUNTPOINT

sdb 8 :16 1 1 . 8 T 0 d i s k

sda 8 : 0 1 1 . 8 T 0 d i s k

|− sda2 8 : 2 1 500M 0 p a r t / boo t

|− sda3 8 : 3 1 1 . 8 T 0 p a r t

| |−VolGroup00−lv swap 253 :1 0 1 . 5G 0 lvm [SWAP]

| |−VolGroup00−l v r o o t 253 :0 0 1 . 8 T 0 lvm /

|− sda1 8 : 1 1 4M 0 p a r t

+ l s s c s i −s

[0 : 0 : 0 : 0] d i s k ATA ST2000NX0253 BE35 / dev / sda 2 . 0 0TB

[1 : 0 : 0 : 0] d i s k ATA ST2000NX0253 BE35 / dev / sdb 2 . 0 0TB

102

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

+ module l i s t

++ / u s r / b i n / modulecmd bash l i s t

C u r r e n t l y Loaded M o d u l e f i l e s :

1) gcc −7.3.0− gcc −4.8.5−ploqhwm 5) p g i / 1 9 . 1 0

2) cmake−3.12.4− gcc −4.8.5− o 5 r g r 6 d 6) openmpi / 3 . 1 . 3 / 2 0 1 9

3) z l i b −1.2.11− gcc −4.8.5−4 v 3 t i c y 7) h p c t o o l k i t

4) / cuda / 1 1 . 0 8) openmp

+ e v a l

+ n v i d i a−smi

Mon Sep 14 2 1 : 3 2 : 2 2 2020

+−−−+

| NVIDIA−SMI 4 5 0 . 5 1 . 0 5 D r i v e r V e r s i o n : 4 5 0 . 5 1 . 0 5 CUDA V e r s i o n : 1 1 . 0 |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+

GPU Name P e r s i s t e n c e −M	Bus−Id Disp .A	V o l a t i l e Uncorr . ECC
Fan Temp P e r f Pwr : Usage / Cap	Memory−Usage	GPU−U t i l Compute M.
		MIG M.
===============================+======================+======================		
0 T e s l a V100−SXM2 . . . On	0 0 0 0 0 0 0 4 : 0 4 : 0 0 . 0 Off	0
N/A 34C P0 54W / 300W	628MiB / 32510MiB	0% D e f a u l t
		N/A
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+

1 T e s l a V100−SXM2 . . . On	0 0 0 0 0 0 0 4 : 0 5 : 0 0 . 0 Off	0
N/A 36C P0 41W / 300W	2MiB / 32510MiB	0% D e f a u l t
		N/A
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+

2 T e s l a V100−SXM2 . . . On	0 0 0 0 0 0 3 5 : 0 3 : 0 0 . 0 Off	0
N/A 31C P0 40W / 300W	2MiB / 32510MiB	0% D e f a u l t
		N/A
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+

3 T e s l a V100−SXM2 . . . On	0 0 0 0 0 0 3 5 : 0 4 : 0 0 . 0 Off	0
N/A 37C P0 40W / 300W	2MiB / 32510MiB	0% D e f a u l t
		N/A
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+

+−−−+

| P r o c e s s e s : |
| GPU GI CI PID Type P r o c e s s name GPU Memory |
| ID ID Usage |
|===|
| 0 N/A N/A 38347 C . / main 313MiB |
| 0 N/A N/A 161396 C . / main 313MiB |
+−−−+

+ c a t

+ lshw −s h o r t −q u i e t − s a n i t i z e

WARNING: you s h o u l d run t h i s program as super−u s e r .

H/W p a t h Device C l a s s D e s c r i p t i o n

==

sys tem 8335−GTH (ibm , w i t h e r s p o o n)

/ 0 bus Motherboard

/ 0 / 1 p r o c e s s o r 02CY210

/ 0 / 1 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 1 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 1 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 1 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 1 6 p r o c e s s o r 02CY210

/ 0 / 1 6 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

103

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

/ 0 / 1 6 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 1 6 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 1 6 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 p r o c e s s o r 02CY210

/ 0 / 2 0 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 0 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 4 p r o c e s s o r 02CY210

/ 0 / 2 4 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 4 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 4 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 4 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 8 p r o c e s s o r 02CY210

/ 0 / 2 8 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 8 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 8 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 8 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 4 0 p r o c e s s o r 02CY210

/ 0 / 4 0 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 4 0 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 4 0 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 4 0 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 4 4 p r o c e s s o r 02CY210

/ 0 / 4 4 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 4 4 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 4 4 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 4 4 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 4 8 p r o c e s s o r 02CY210

/ 0 / 4 8 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 4 8 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 4 8 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 4 8 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 5 2 p r o c e s s o r 02CY210

/ 0 / 5 2 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 5 2 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 5 2 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 5 2 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 5 6 p r o c e s s o r 02CY210

/ 0 / 5 6 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 5 6 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 5 6 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 5 6 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 6 0 p r o c e s s o r 02CY210

/ 0 / 6 0 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 6 0 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 6 0 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 6 0 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 4 p r o c e s s o r 02CY210

/ 0 / 4 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 4 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 4 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 4 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 6 4 p r o c e s s o r 02CY210

/ 0 / 6 4 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 6 4 / 1 memory 32KiB L1 Cache (d a t a)

104

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

/ 0 / 6 4 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 6 4 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 6 8 p r o c e s s o r 02CY210

/ 0 / 6 8 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 6 8 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 6 8 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 6 8 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 7 2 p r o c e s s o r 02CY210

/ 0 / 7 2 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 7 2 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 7 2 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 7 2 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 7 6 p r o c e s s o r 02CY210

/ 0 / 7 6 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 7 6 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 7 6 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 7 6 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 8 0 p r o c e s s o r 02CY210

/ 0 / 8 0 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 8 0 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 8 0 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 8 0 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 8 4 p r o c e s s o r 02CY210

/ 0 / 8 4 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 8 4 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 8 4 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 8 4 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 8 8 p r o c e s s o r 02CY210

/ 0 / 8 8 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 8 8 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 8 8 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 8 8 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 9 2 p r o c e s s o r 02CY210

/ 0 / 9 2 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 9 2 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 9 2 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 9 2 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 4 8 p r o c e s s o r 02CY210

/ 0 / 2 0 4 8 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 4 8 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 4 8 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 0 4 8 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 5 2 p r o c e s s o r 02CY210

/ 0 / 2 0 5 2 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 5 2 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 5 2 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 0 5 2 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 5 6 p r o c e s s o r 02CY210

/ 0 / 2 0 5 6 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 5 6 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 5 6 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 0 5 6 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 6 0 p r o c e s s o r 02CY210

/ 0 / 2 0 6 0 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 6 0 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 6 0 / 2 memory 512KiB L2 Cache (u n i f i e d)

105

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

/ 0 / 2 0 6 0 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 6 4 p r o c e s s o r 02CY210

/ 0 / 2 0 6 4 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 6 4 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 6 4 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 0 6 4 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 6 8 p r o c e s s o r 02CY210

/ 0 / 2 0 6 8 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 6 8 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 6 8 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 0 6 8 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 7 2 p r o c e s s o r 02CY210

/ 0 / 2 0 7 2 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 7 2 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 7 2 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 0 7 2 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 7 6 p r o c e s s o r 02CY210

/ 0 / 2 0 7 6 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 7 6 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 7 6 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 0 7 6 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 0 9 6 p r o c e s s o r 02CY210

/ 0 / 2 0 9 6 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 0 9 6 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 0 9 6 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 0 9 6 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 0 0 p r o c e s s o r 02CY210

/ 0 / 2 1 0 0 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 0 0 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 0 0 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 0 0 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 0 4 p r o c e s s o r 02CY210

/ 0 / 2 1 0 4 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 0 4 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 0 4 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 0 4 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 0 8 p r o c e s s o r 02CY210

/ 0 / 2 1 0 8 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 0 8 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 0 8 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 0 8 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 1 2 p r o c e s s o r 02CY210

/ 0 / 2 1 1 2 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 1 2 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 1 2 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 1 2 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 1 6 p r o c e s s o r 02CY210

/ 0 / 2 1 1 6 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 1 6 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 1 6 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 1 6 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 2 0 p r o c e s s o r 02CY210

/ 0 / 2 1 2 0 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 2 0 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 2 0 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 2 0 / 3 memory 10MiB L3 Cache (u n i f i e d)

106

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

/ 0 / 2 1 2 4 p r o c e s s o r 02CY210

/ 0 / 2 1 2 4 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 2 4 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 2 4 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 2 4 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 2 8 p r o c e s s o r 02CY210

/ 0 / 2 1 2 8 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 2 8 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 2 8 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 2 8 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 3 2 p r o c e s s o r 02CY210

/ 0 / 2 1 3 2 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 3 2 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 3 2 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 3 2 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 3 6 p r o c e s s o r 02CY210

/ 0 / 2 1 3 6 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 3 6 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 3 6 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 3 6 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 1 4 0 p r o c e s s o r 02CY210

/ 0 / 2 1 4 0 / 0 memory 32KiB L1 Cache (i n s t r u c t i o n)

/ 0 / 2 1 4 0 / 1 memory 32KiB L1 Cache (d a t a)

/ 0 / 2 1 4 0 / 2 memory 512KiB L2 Cache (u n i f i e d)

/ 0 / 2 1 4 0 / 3 memory 10MiB L3 Cache (u n i f i e d)

/ 0 / 2 memory 254GiB System memory

/ 0 / 2 / 0 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / 1 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / 2 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / 3 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / 4 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / 5 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / 6 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / 7 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / 8 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / 9 memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / a memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / b memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / c memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / d memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / e memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 2 / f memory 8GiB RDIMM DDR4 2666 MHz (0 . 4 ns)

/ 0 / 3 g e n e r i c bmc−f i rmware−v e r s i o n

/ 0 / 5 g e n e r i c b u i l d r o o t

/ 0 / 6 g e n e r i c capp−ucode

/ 0 / 7 g e n e r i c hcode

/ 0 / 8 g e n e r i c h o s t b o o t

/ 0 / 9 g e n e r i c h o s t b o o t−b i n a r i e s

/ 0 / a g e n e r i c l i n u x

/ 0 / b g e n e r i c machine−xml

/ 0 / c g e n e r i c occ

/ 0 / d g e n e r i c p e t i t b o o t

/ 0 / e g e n e r i c sbe

/ 0 / f g e n e r i c s k i b o o t

/ 0 / 1 0 g e n e r i c v e r s i o n

/ 0 / 1 0 0 b r i d g e POWER9 Host Br idg e (PHB4)

107

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

/ 0 / 1 0 1 b r i d g e POWER9 Host Br idg e (PHB4)

/ 0 / 1 0 1 / 0 bus TUSB73x0 SuperSpeed USB 3 . 0 xHCI Host

C o n t r o l l e r

/ 0 / 1 0 2 b r i d g e POWER9 Host Br idg e (PHB4)

/ 0 / 1 0 2 / 0 b r i d g e AST1150 PCI−to−PCI B r i d g e

/ 0 / 1 0 2 / 0 / 0 d i s p l a y ASPEED G r a p h i c s Fami ly

/ 0 / 1 0 3 b r i d g e POWER9 Host Br idg e (PHB4)

/ 0 / 1 0 4 b r i d g e POWER9 Host Br idg e (PHB4)

/ 0 / 1 0 4 / 0 b r i d g e PLX Technology , I n c .

/ 0 / 1 0 4 / 0 / 2 b r i d g e PLX Technology , I n c .

/ 0 / 1 0 4 / 0 / 2 / 0 s t o r a g e 88 SE9235 PCIe 2 . 0 x2 4−p o r t SATA 6 Gb / s

C o n t r o l l e r

/ 0 / 1 0 4 / 0 / a b r i d g e PLX Technology , I n c .

/ 0 / 1 0 4 / 0 / a / 0 d i s p l a y GV100GL [T e s l a V100 SXM2 32GB]

/ 0 / 1 0 4 / 0 / b b r i d g e PLX Technology , I n c .

/ 0 / 1 0 4 / 0 / b / 0 d i s p l a y GV100GL [T e s l a V100 SXM2 32GB]

/ 0 / 1 0 4 / 0 / c b r i d g e PLX Technology , I n c .

/ 0 / 1 0 4 / 0 . 1 g e n e r i c PLX Technology , I n c .

/ 0 / 1 0 4 / 0 . 2 g e n e r i c PLX Technology , I n c .

/ 0 / 1 0 4 / 0 . 3 g e n e r i c PLX Technology , I n c .

/ 0 / 1 0 4 / 0 . 4 g e n e r i c PLX Technology , I n c .

/ 0 / 1 0 5 b r i d g e POWER9 Host Br idg e (PHB4)

/ 0 / 1 0 5 / 0 enP5p1s0f0 ne twork NetXtreme BCM5719 G i g a b i t E t h e r n e t PCIe

/ 0 / 1 0 5 / 0 . 1 enP5p1s0f1 ne twork NetXtreme BCM5719 G i g a b i t E t h e r n e t PCIe

/ 0 / 1 0 6 b r i d g e IBM

/ 0 / 1 0 7 b r i d g e IBM

/ 0 / 1 0 8 b r i d g e IBM

/ 0 / 1 0 9 b r i d g e IBM

/ 0 / 1 0 a b r i d g e IBM

/ 0 / 1 0 b b r i d g e IBM

/ 0 / 1 0 c b r i d g e IBM

/ 0 / 1 0 d b r i d g e IBM

/ 0 / 1 0 e b r i d g e IBM

/ 0 / 1 0 f b r i d g e IBM

/ 0 / 1 1 0 b r i d g e IBM

/ 0 / 1 1 1 b r i d g e IBM

/ 0 / 1 1 2 b r i d g e POWER9 Host Br idg e (PHB4)

/ 0 / 1 1 3 b r i d g e POWER9 Host Br idg e (PHB4)

/ 0 / 1 1 4 b r i d g e POWER9 Host Br idg e (PHB4)

/ 0 / 0 b r i d g e POWER9 Host B r id ge (PHB4)

/ 0 / 0 / 0 b r i d g e PLX Technology , I n c .

/ 0 / 0 / 0 / 4 b r i d g e PLX Technology , I n c .

/ 0 / 0 / 0 / 4 / 0 d i s p l a y GV100GL [T e s l a V100 SXM2 32GB]

/ 0 / 0 / 0 / 5 b r i d g e PLX Technology , I n c .

/ 0 / 0 / 0 / 5 / 0 d i s p l a y GV100GL [T e s l a V100 SXM2 32GB]

/ 0 / 0 / 0 / d b r i d g e PLX Technology , I n c .

/ 1 bond0 ne twork E t h e r n e t i n t e r f a c e

/ 2 br0 ne twork E t h e r n e t i n t e r f a c e

WARNING: o u t p u t may be i n c o m p l e t e o r i n a c c u r a t e , you s h o u l d run t h i s program as

supe r−u s e r .

108

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 11,2021 at 21:48:00 UTC from IEEE Xplore. Restrictions apply.

