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Summary

Finite-difference methods based on high-order stencils are commonly used for mod-

eling of seismic wave propagation, weather forecasting, computational fluid dynam-

ics, convolutional neural networks, and others. Nowadays, the community commonly

employs graphics processing units (GPUs) to accelerate such stencil computations. As

a result, knowing how to write efficient stencil computations for GPUs is of signifi-

cant interest. While high-performance, low-order stencils on GPUs have been studied

extensively in the literature, not all proposed approaches work well for high-order

stencils. Furthermore, coping with boundary conditions used with stencils for seismic

modeling makes it challenging to efficiently exploit thread-level parallelism on GPUs.

In this article, we describe several implementations of a 25-point stencil. We evalu-

ate our stencil code shapes, memory hierarchy usage, data access patterns, and other

performance attributes on several modern GPUs and compare them with machine

rooflines. On average, our top-performing kernels achieve six times the performance

of a 25-point stencil code developed in C and mapped to GPUs using OpenACC. Sev-

eral of our implementations have excellent performance portability across multiple

generations of both NVIDIA and AMD GPUs.
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1 INTRODUCTION

To accelerate stencil computations, compute nodes in high performance computing (HPC) platforms used for seismic modeling often employ graphics

processing units (GPUs) as accelerators. Understanding how to develop efficient high-order stencils for GPUs is therefore a topic of great interest.

Nevertheless, accelerating high-order stencils on GPUs is surprisingly difficult due to the complexity and variety of GPU architectures. Without

careful tuning, stencil implementations for GPUs are likely to deliver performance that falls far short of what is possible. An efficient implementation

of a high-order stencil on a GPU requires careful attention to data reuse, warp utilization, work balance, data movement, cache alignment, and

arithmetic intensity among other issues.

Performance characteristics are usually different for GPUs from different vendors, and they often change significantly between

generations from a single vendor. As the best kernel on one GPU may not be the best on GPUs from other vendors and may not

remain the best on newer generations of GPUs from the same vendor, performance portability across GPUs with varying characteristics

is critical.

This article explores strategies to achieve excellent performance for high-order stencils on GPUs and understand the factors that affect per-

formance portability. To do so, we investigate the strengths and weaknesses of various code shapes for high-order stencils. This article makes the

following contributions:
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• a careful assessment of existing approaches, including their strengths and weaknesses when applied to high-order stencils with boundary

conditions;

• a collection of implementations of high-order stencil kernels with a selected set of algorithms and their variants;

• an investigation of the characteristics of high-order stencil kernels that affect their performance, including register usage, memory footprints,

exposed latencies and stalls, as well as theoretical and achieved occupancy;

• an exploration of performance optimization strategies for high-order stencils;

• a performance comparison across multiple generations of NVIDIA GPUs (NVS510, P100, V100, and A100) and AMD GPUs (MI50 and MI100);

and

• a quantitative assessment of kernels we developed using the Roofline performance model on various GPUs.

Section 2 presents background about GPU performance issues and the seismic modeling problem that is the target of the stencils that we

study. Section 3 reviews related work. Section 4 describes our approaches in general. Section 5 presents our implementations. Section 6 details

optimizations needed to achieve excellent performance. Section 7 describes our evaluation methodology, experimental results, and a discussion of

our findings. Section 8 summarizes our conclusions and plans for future work.

2 BACKGROUND

To understand our high-order stencil implementations and evaluation, we briefly introduce necessary background about stencil computations,

especially the ones used in seismic modeling, and GPU performance issues.

2.1 Stencil computations

In stencil computations, data elements from a multi-dimensional array are iteratively updated according to a fixed pattern. The array, representing

a volume of data, is often called a grid. An element in the grid is usually called a cell or a point. Calculating the next value for a cell using a stencil

involves computing a weighted sum of products between values of set of neighboring cells (the set of cells used are defined by the stencil) and scaling

coefficients.

Applying a stencil pattern to the points in a block requires values for points in neighboring blocks. Collectively, the points needed from neigh-

boring blocks are known as the halo region. The thickness of the halo along each dimension is called the halo size or halo width, and it also defines

the order of the stencil. When a stencil has a large halo width, it is called a high-order stencil.

A stencil computation is typically applied to a data grid over a sequence of iterations.

2.2 Seismic modeling

In this article, we study stencil-based implementations of the acoustic isotropic approximation of the wave equation1 used for seismic modeling.

The oil and gas industry applies such imaging strategies on large grids to model subsurface and generate seismic data from source perturbations.

The wave equation for an acoustic isotropic operator with constant-density has the following form:

1

V2

𝜕2u
𝜕t2

− ∇2u = f, (1)

where u = u(x, y, z) is the wavefield, V is the Earth model (with velocity as rock property), and f is the source perturbation. The equation is discretized

in time using a second-order centered stencil, resulting in the semi-discretized equation:

un+1 − Qun + un−1 = (Δt2)V2fn
,with Q = 2 + Δt2V2∇2

. (2)

Finally, the equation is discretized in space using a 25-point stencil in 3D, with eight points in along each axis surrounding a center point, where

cxyz, cxm, cym, czm are the discretization parameters:

∇2u(x, y, z) ≈ cxyz × u(i, j, k)+
4∑

m=1

cxm × [u(i + m, j, k) + u(i − m, j, k)] + cym × [u(i, j + m, k) + u(i, j − m, k)] + czm × [u(i, j, k + m) + u(i, j, k − m)]. (3)
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Algorithm 1. A high-level description of the algorithm for solving the acoustic isotropic approximation of the wave equation with constant density

Data: f: source

Result: un: wavefield at timestep n, for n ← 1 to T

u0 ∶= 0 for n ← 1 to T do

for each point in wavefield un do
Solve Equation (2) (left-hand side) for wavefield un

end

un = un + fn (Equation 2 right-hand side)

end

A high-level description of the algorithm is shown in Algorithm 1. As is common for seismic modeling, our simulations employ a perfectly

matched layer (PML)2 boundary condition around the simulation domain. The resulting extended domain consists of an “inner” region and a

surrounding “PML” region.

To compute values for the inner region using the acoustic isotropic wave equation, we apply a multi-statement stencil that is eighth-order in

space and second-order in time. This involves applying a star-shaped 25-point stencil to elements of a 3D array, known as the u-array. Computation

in the PML region is more complex than that in the inner region. In the PML region, we employ the same 25-point stencil applied in the inner region

and also a 7-point star-shaped stencil to another array, known as the eta-array, to compute boundary conditions.

The grid, representing the physical domain, tends to be substantial in production simulations. Each of its dimensions is usually large with up

to 4000 points. To simulate how the waves propagate through the domain, it is necessary to apply the stencil computations iteratively for a large

number of time steps.

While implementations of the acoustic isotropic kernel on GPUs are the focus of this article, the techniques we explore are useful for other

high-order stencils with boundary conditions.

2.3 GPU performance issues

High performance kernels for GPUs are typically structured differently than those for CPU as GPUs have very different architectural characteristics

than CPUs.

Unlike the multiple instruction multiple data (MIMD) execution model used on CPUs, GPUs use a single-instruction-multiple-thread (SIMT)

execution model. A GPU bundles a group of 32 SIMT threads known as a warp on NVIDIA GPUs or 64 threads known as a wavefront on AMD GPUs. A

GPU runs all threads in a warp or a wavefront at once executing the same instruction. Computations on GPUs must exploit fine-grain data parallelism

to make full use of the thread-level parallelism of the SIMT model.

On NVIDIA GPUs, a group of warps constitute a thread block, commonly referred to a block. AMD GPUs pack wavefronts into workgroups. To

simplify the discussion in this article, we call this concept a thread block or block interchangeably regardless of the GPU vendor. Each thread block

on a GPU has a limited amount of hardware resources, such as shared memory and registers. The number of blocks that can execute simultaneously

on a GPU is limited by the aggregate resource quota for the active threads. To improve performance, we strive to design implementations with high

occupancy*to use as many of the GPU functional units as possible.

GPUs also have their own memory hierarchy, which differs from that of CPUs. In addition to memory and multiple levels of cache, GPU memory

hierarchies also include specialized structures such as constant memory, texture memory, and shared memory; each of these specialized structures

supports limited access patterns. To exploit the GPU memory hierarchy, computations must be appropriately structured. Both data placement and

data movement in the memory hierarchy need to be carefully tailored.

3 RELATED WORK

There are many papers that describe strategies for efficient stencil implementations on CPUs3-15 and GPUs.16-22 We discuss the most related efforts

below.

Time skewing8,9 has been widely used on CPUs.10-12 It increases data reuse and cache locality by skewing one or more data dimensions by the

time dimension. It computes several time steps for a tile while the values are in cache to avoid costly data movement.

* GPU occupancy for a computation is the ratio of the number of warps or wavefronts that run concurrently divided by maximum number of concurrent warps or wavefronts supported by the GPU

hardware.



4 of 23 SAI ET AL.

Cache-oblivious algorithms3-7 make optimal use of each memory level without the need of taking cache size as a parameter. They tile

the domain by performing a space cut or a time cut. Cache oblivious algorithms have been effective for accelerating stencil computations

on CPUs.7

Overlapped tiling uses time skewing to trade redundant computation along the boundaries of overlapped tiles for a reduction in memory band-

width required.15,16 It improves performance by increasing the arithmetic intensity of parallel stencil computations. Because loading data from a

GPU’s global memory is more expensive than data-parallel computation, overlapped tiling is an attractive approach for GPUs. Redundant compu-

tation can be overlapped with data accesses to help hide memory latency. While overlapped tiling has been shown to enhance the performance of

low-order stencils on GPUs, for high-order stencils, redundant computation grows quickly when skewed across multiple time steps by the width of a

high-order stencil. Additional calculations needed in cells at the boundary of the domain introduce branch divergence as boundary threads perform

extra computations.

While overlapped tiling introduces a large amount of redundant computation to compute multiple time steps, split tiling17 offers an

alternate approach to time skewing. Split tiling advances points in a domain by multiple time steps with a two-phase computation. The

first phase computes in parallel on hyper-trapezoidal tiles that taper along the time dimension. Once all tiles from the first phase have

been computed, a second phase back-fills the missing points. Each point is only computed once, in either the hyper-trapezoid phase or the

back-fill phase.

Instead of performing the whole stencil computation for a point at once, the semi-stencil algorithm13,14 factors a stencil computation into

two halves—a forward update and a backward update. Rather than loading the entire width of a stencil along a streaming dimension at once, the

semi-stencil algorithm loads only half of the points along the streaming dimension, performs a backward update to complete the computation of a

point to its left, and performs a forward update to partially compute a point to its right. The semi-stencil algorithm trades half of its loads of neighbor-

ing cells along the streaming dimension with a store and reload of a partial result. For high-order stencils, this approach reduces the number of loads

per point in the calculation and also changes the ratio of loads to stores. The semi-stencil algorithm has been shown to improve the performance of

vectorized computation on CPUs, especially for high-order stencils. The reduction in loads that the semi-stencil algorithm affords becomes more

profitable as stencil width increases.

Nguyen et al.18 introduce a 3.5D blocking algorithm that combines 2.5D spatial blocking with 1D temporal blocking. 2.5D spatial blocking

involves blocking in a 2D plane and streaming along a third dimension. In a 3.5D variant, they advance the computation of each 2D tile for multi-

ple time steps using a time skewing approach. They perform computations for each time step, and write data back to the global memory eventually.

While the 3.5D algorithm works very well on CPUs, the 1D temporal blocking using time skewing shares the same challenges for high-order stencils

with boundary conditions on GPUs: barrier synchronizations and limited parallelism. To increase data reuse, this approach stores active 2D planes

in GPU shared memory. As a result, the tile size is limited by the shared memory available to a thread block.

Another 2.5D blocking strategy for GPUs19 maintains data points of the currently active plane in shared memory while employing registers to

store data elements along a streaming dimension. Keeping the central plane in shared memory allows faster data access and using registers reduces

the shared memory pressure, enabling a larger data tile.

The AN5D framework20 refines the 2.5D and 3.5D solutions with fixed register allocations, double buffering, and division of the streaming

dimension. AN5D delivers great performance for simple single-statement kernels. However, neither boundary conditions nor multi-statement sten-

cils are explored in this work. Our work focuses on a high-order stencil with boundary conditions, and the boundary layer of our domain requires

multiple statements, instead of simple single-statement stencil updates.

Other related work tackles stencil computations with interesting approaches, including auto-tuning with dynamic resource allocations,23 DAG

reordering,24 diamond tiling using a polyhedral model,25,26 functional programming,27,28 and multi-layer intermediate representations.29-31

In terms of software engineering, there are two common practices for developing stencil code on GPUs for evaluation: hand-written kernels and

domain-specific language (DSL)-based approaches.7,22,32-36 While we are ultimately interested in DSL-based approaches that simplify the generation

of code with complex logic, in this article we study hand-written stencils to avoid limitations as we explore implementation strategies for high-order

stencils to understand in detail the strengths and weaknesses of various strategies for achieving high performance and performance portability.

To simplify our evaluation and enhance code reuse, we developed a framework tailored specifically to support our problem domain and the stencil

implementations we study.

4 APPROACH

We study a high-order stencil-based implementation of the acoustic isotropic wave equation approximation for seismic modeling. Solving this with

finite differences essentially involves high-order stencil computations with proper handling of the boundary conditions. To explore the characteris-

tics of various space, we evaluate different code shapes with various computational organizations (e.g., 2D vs. 3D tiles) and different strategies for

memory hierarchy management. In the rest of this section, we explain data decomposition alternatives, describe blocking strategies, and discuss

how we structure our implementations.
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4.1 Data domain decomposition

Our data domain contains two regions: an inner region and a surrounding PML region that implements boundary conditions for the simulation

domain. At the center of the data domain sits an inner region, and the volume between it and the data domain boundaries is the PML region. Both

the size of the inner region and the width of the PML region are variables in our simulations. Based on this data domain and its boundary conditions,

we explored three decomposition strategies: unified domain, two-domain, and seven-domain.

The unified domain strategy handles the entire data domain as a whole. This strategy uses a single kernel that is applicable to any region of the

data domain. Conditionals in the kernel determine whether a point is in the PML region or the inner region. A unified domain kernel performs a dif-

ferent kind of stencil computation for each region: one in the PML region with special boundary calculations and the other in the inner region for the

acoustic isotropic wave function approximation. This strategy simplifies the implementation to make certain complex stencil algorithm implemen-

tations realistically possible. However, this strategy yields branch divergence for subregions that contain points in both the PML and inner regions,

which hurts performance.

The two-domain strategy separates kernels for the inner region and the PML region, and launches separate kernels for the two regions concur-

rently. Although this strategy lowers the chance of branch divergence by avoiding conditionals that check whether a point is inside the inner region

or PML region in every kernel, it leads to unbalanced work among threads along the region boundaries if the size of the GPU blocks does not evenly

divide the extents of the PML and inner regions.

Figure 1 illustrates our seven-domain strategy, which is a refinement of two-domain strategy. Instead of just separating the inner and PML

regions, the seven-domain strategy divides the PML region into six subregions. We slice the domain along the top and bottom of the inner region to

separate top and bottom slabs of the PML region. Next, we slice around the front, back, and sides of the inner region to peel off four more slabs of

the PML region. The six PML subregions obtained from these cuts are top, bottom, front, back, left, and right PML subregions. With this decompo-

sition, we concurrently launch individual GPU kernels to perform a stencil computation on each of the seven subregions: one for the inner region

and another for each of the six PML subregions. This approach eliminates the intrinsic branch divergence along the boundaries between regions

and also avoids having conditional code needed to calculate points in the PML region present when calculating points in the inner region. When run-

ning different grid sizes, work imbalance only occurs in a few cases along region borders. This can be reduced with automated code generation that

tailors the number of threads for the shape of each slab.

4.2 Blocking strategies

We partition each region into thread blocks, so that each block maximizes the GPU utilization for a kernel launch without exceeding the hardware

resources available to threads in a block. We use three blocking strategies in our experiments: 3D blocking, 2.5D blocking, and 3.5D blocking

(Figure 2).

4.2.1 3D blocking

This approach divides each of the data regions into axis-aligned 3D blocks. We experiment with different block dimensions to find the best ones.

We use fixed values in each execution to simplify our experiments. A GPU kernel computes a 3D data block using a 3D thread block with matching

dimensions.

F I G U R E 1 Data domain decomposition
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F I G U R E 2 Blocking strategies: (Left) 3D blocking, (right) 2.5D and 3.5D blocking

4.2.2 2.5D blocking

This approach partitions the data domain along the inner two X and Y data dimensions and performs a streaming computation along the outermost

Z dimension. A GPU kernel computes each 3D data block using a 2D thread block for each XY tile along with a loop that iterates over the Z streaming

dimension.

4.2.3 3.5D blocking

Like 2.5D blocking, this approach also partitions the data domain along the inner X and Y dimensions. As with the 2.5D strategy, a GPU kernel com-

putes each 3D data block using a 2D thread block for each XY tile and performs a streaming computation along the outermost Z dimension. However,

a single launch of a 3.5D GPU kernel computes two time steps of the stencil computation for each 3D data block. To provide the data values needed to

compute a second time step for the tile interior, each XY tile for the 3.5D strategy overlaps a boundary of each of its neighboring tiles by its halo width.

4.3 Kernels and their variants

To understand the performance properties of high-order stencils and their device characteristics, we implemented several kernels with each

employing an appropriate combination of strategies for padding, data decomposition, blocking, data accesses, and data volume traversals. For each

implementation, we study several various block sizes to understand the strengths and weaknesses of implementation alternatives. Table 1 lists our

implementation strategies, and we describe the details of these kernel implementations in the next section.

5 KERNEL IMPLEMENTATIONS

A code repository that includes all of our kernel implementations is publicly available on Github: https://github.com/rsrice/CPE21-Artifact. In our

implementations, we denote the width of halo by R. We use a R = 4 for the acoustic isotropic simulations in our experiments. Let Nx, Ny, and Nz

denote the extents of the input data region along the X, Y, and Z axes, respectively. For 3D blocks, we use (x, y, z) to locate a point in a 3D block and

identify its corresponding thread in a GPU thread block. Similarly, we use (x, y) to denote the coordinate for both an array element in a 2D plane and

a GPU thread in a 2D thread block.

5.1 3D blocking using global memory only

The first kernel implementation we consider uses only global memory, which makes it conceptually easiest to understand and practically the simplest

to implement. Let Dx, Dy, and Dz be the block dimensions of the X, Y, and Z axes, respectively. Thus the block size is Dx × Dy × Dz. The total number

of points in a thread block needs to be ≤1024 to respect the GPU’s limit of at most 1024 threads per block. Because we launch each kernel with

thread blocks of the same size, the GPU grid size of each data region is ⌈Nx∕Dx⌉ × ⌈Ny∕Dy⌉ × ⌈Nz∕Dz⌉.

https://github.com/rsrice/CPE21-Artifact
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TA B L E 1 Implementation strategies

Identifier Description Blocking Domain decomposition

gmem_* 3D blocking using global memory only

3D

Seven domains

smem_u _* 3D blocking using shared memory for

the u array

smem_eta_* 3D blocking using shared memory for

boundary regions

st_smem_* 2.5D streaming with multiple planes in

shared memory

2.5D
st_reg_shft_* 2.5D streaming using register shifting

st_reg_fixed_* 2.5D streaming using fixed registers

with loop unrolling

st_semi_* 2.5D streaming using semi-stencil

ol_gmem_* 3.5D streaming using global memory
3.5D Unified domain

ol_reg_shft_* 3.5D streaming using register shifting

To compute our 25-point stencil, each thread concurrently fetches the central point for the stencil and four neighboring points along each direc-

tion of each axis. When each thread in a block concurrently fetches points from global memory, memory fetches by adjacent threads along the

innermost X dimension coalesce, which reduces the number of memory transactions and delivers good performance. We refer to the family of 3D

kernel implementations that fetch stencil points directly from the u array in global memory as gmem_{Dx}_{Dy}_{Dz} in our experiments.

5.2 3D blocking using shared memory for the u array

This approach also uses the aforementioned 3D blocking strategy for each of the data regions. Unlike the previous approach, in which threads

compute directly on data fetched from global memory, threads in this kernel read values of the u array from global memory, store them into shared

memory, synchronize, and then perform the stencil computation on data from shared memory. The total number of points we fetch in this case is the

sum of Dx × Dy × Dz for a block and (Dx × Dy + Dx × Dz + Dy × Dz) × R × 2 for halos around the block. For high-order stencils, one must account for

the halo size to ensure both the block and the halo fit in shared memory.

Designing the right approach to minimize the cost of data fetches is critical to overall performance for high-order stencils, because the halos

account for a significant fraction of the data to fetch into shared memory. From our evaluations, we found the following approach yields good per-

formance: first, thread (i, j, k) fetches the point (i, j, k); then, we use the first R threads along each dimension to fetch the halos from both sides. We

refer to the implementation that uses 3D blocking and shared memory as smem u {Dx} {Dy} {Dz} in our experiments.

5.3 3D blocking using shared memory for boundary regions

This implementation also utilizes shared memory and 3D blocking but differs from the previous approach by fetching the eta array into shared

memory instead of fetching the u array into shared memory. This strategy only applies in the PML kernel because eta is only used in the stencil

computation inside the PML region.

Although this implementation may not seem new, it is interesting for two reasons. First, unlike low-order stencils widely studied in the literature,

we address the combination of high- and low-order stencils. As previously described, computations on eta in the PML region use a low-order 7-point

stencil rather than the 25-point high-order stencil of the inner region. In fact, the halo size of eta is just one. Second, by accessing the u array in global

memory with a good access pattern for a high-order stencil, meanwhile using shared memory for the eta array with a lower-order stencil, it provides

us an opportunity to observe the performance changes.

We use two implementations that differ in the number of conditionals when fetching eta into shared memory. In our experiments, we refer to the

shared memory kernel implementation that uses three conditionals as smem eta 3 and the implementation that uses one conditional as smem eta 1.

We let R eta denote the width of halos for eta, which is one for the PML layer of the acoustic isotropic kernel.

smem eta 3 uses the first 2 × R eta threads from each dimension to fetch the halos. We need three conditionals for three dimensions, that is,

one for each dimension. Along each dimension, threads 0 to R eta − 1 fetch the halo on one side, and threads R eta to 2R eta − 1 fetch the halo on
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Algorithm 2. Shared memory halo fetching strategy for eta using only one conditional

Data: xidz, yidx, zidx: thread index of x, y, and z dimension, respectively

Data: nt: number of threads per block dimension

Result: g: coordinate for global memory

Result: s: coordinate for shared memory

if zidx <6 then
z ← zidx & 1;

sz ← z ∗ 9;

gz ← z ∗ (bt + 1) − 1;

xzswap ← zidx < = 1;

yzswap ← (zidx & 2) == 2;

si ← xzswap ? sz ∶ (xidx+1);
sj ← yzswap ? sz ∶ (yidx+1);
si ← xzswap ? (xidx+1) ∶ (yzswap ? (yidx+1) ∶ sz );
gi ← xzswap ? gz ∶ xidx;

gj ← yzswap ? gz ∶ yidx;

gi ← xzswap ? xidx ∶ (yzswap ? yidx∶ gz );
s ← (si, sj, sk);

g ← (gi, gj, gk);

end

the other side. Because R eta is just 1 for acoustic isotropic kernel, we only need two threads fetching halos along each thread dimension, one for

each side. However, this introduces unbalanced work during data fetches for a 3D block of size 8x8x8.

smem eta 1 with only one condition is designed to address the work imbalance issue. We use the first six threads from the Xdimension to fetch

halo points. Algorithm 2 shows how six planes of threads are tilted to identify the halo point each thread is responsible for fetching. However, this

algorithm has relatively complex arithmetic to compute the halo position to be fetched by a thread, so an evaluation is needed to determine whether

the strategy is profitable.

5.4 2.5D streaming with multiple planes in shared memory

This is the first implementation we consider that uses 2.5D blocking, which streams a 2D plane along the third dimension. As X is the innermost

dimension in our data layout, to exploit cache, we choose the XY-subplane as the 2D plane and stream along the Z dimension. Let Dx and Dy denote

the dimensions of the 2D tile along the X and Y axes, respectively. We launch kernels using 2D thread blocks of size Dx × Dy. The GPU grid size of

each data region is ⌈Nx∕Dx⌉ × ⌈Ny∕Dy⌉.

We use shared memory as a buffer to store all data needed in the stencil computations for a particular XY-subplane. We load the current

XY-subplane into the shared memory buffer, and store R subplanes above the current subplane and R subplanes below in the shared memory. There-

fore, we allocate a buffer for total of (2R + 1) × (Dx + 2R) × (Dy + 2R)points in which each of the 2R + 1 planes has (Dx + 2R) × (Dy + 2R)points. We

carefully choose the extent of each subplane so that the buffer size is large enough to enhance data reuse, while making sure that the aggregated data

volume of the planes is still within the shared memory quota available to a block. Let B denote our buffer, and B[i]denote the ith subplane in the buffer.

Before we can start the streaming computation, points from the top halos are preloaded into buffer B[0 … R) and the first R XY-subplanes are

preloaded into B[R … 2R). Then, for each z ← [0 … Nz) in our streaming loop, we first load the (z+R)th XY-subplane into B[(z + R) mod (2R + 1)];
next, we perform the stencil computation for the zth XY-subplane with the stencil points read from B in shared memory; finally, we store the result

back to global memory.

Our initial implementation of this strategy used a modulus operator, as described above. However, our evaluation showed that the modulus

operator is particularly costly on a GPU. Since the z index always increases by one inside the streaming loop, we refined our implementation using

loop unrolling and index rotation to achieve the desired effect without modulus computations. We refer to the family of kernel implementations of

this strategy as st smem {Dx} {Dy} in our experiments.

In this approach, the GPU per-block shared memory size limits the shared memory buffer size. To avoid this limitation, alternative GPU hard-

ware, such as registers, can be exploited for storing stencil points along the streaming dimension. We discuss a few approaches that use registers to

store points along the streaming dimension in the following sections.



SAI ET AL. 9 of 23

F I G U R E 3 Register: (Left) shifting, (right) fixed

5.5 2.5D streaming using register shifting

The 2.5D streaming approach described in the previous section keeps all points in shared memory. However, the shared memory limit for a thread

block limits the size of the tile. Here and in the next few sections, we keep points in the halo regions along the z dimension in registers, which enables

us to use larger tiles.

In this 2.5D streaming approach, while we keep points of an active XY-subplane in shared memory, we use registers for halo points along the

z-axis as we stream. While data loaded by any thread in a block into shared memory is accessible to all threads in the block, each register is only

accessible to a single thread. We can use registers for halo data along the z axis because the halo data is not needed by other threads for their stencil

computations.

For this approach, we allocate shared memory to hold (Dx + 2R) × (Dy + 2R) points for the currently active plane. The shared memory footprint

compared to the previous method is 1:(2R + 1). Since R is large for high-order stencils, its reduction in shared memory usage is significant. Let S(x, y)
denote the data point (x, y) in the shared memory. We allocate 2R + 1 registers for the current point and its neighbors in each direction along the

z-axis. Let Reg(x, y)[i] denote the ith register for the thread (x, y).
Before the streaming computation begins, each thread (x, y) fetches data values from (x, y, z) for z ← [−R … R) and stores them into registers

Reg(x, y)(0 … 2R], respectively. Then, inside the streaming loop, for each z ← [0 … Nz), as shown in Figure 3, we first shift the register indices back

one position on each thread, such that for r ← (0 … 2R], Reg(x, y)[r − 1] = Reg(x, y)[r]; next, we load the leading point along the streaming dimension

(x, y, z + R) into register Reg(x, y)[2R]; then, we fetch data (x, y, z) from global memory into S(x, y); and we finally perform the stencil computation

by using the data of XY-subplane from shared memory and data along the z-axis from registers. Finally, the kernel stores the stencil result for each

thread back to global memory. We refer to the family of kernel implementations using this strategy as st reg shft {Dx} {Dy} in our experiments.

We use the notation of array indexing to illustrate the register value accesses, however, in our implementation, registers are realized explicitly

as 2R + 1 scalar variables. We use the same variable names, behind4, behind3, behind2, behind1, current, front1, front2, front3, and

front4, as the original implementation of 2.5D register shifting by Micikevicius,19 since both work on stencils with halo size of 4.

5.6 2.5D streaming using fixed registers with loop unrolling

Like the previous approach, this implementation uses shared memory for an active XY-subplane and registers for points along the z-axis, the

streaming dimension. This time, values in the registers remain fixed instead of being “shifted.”

We again allocate a shared memory of (Dx + 2R) × (Dy + 2R) points. Let S(x, y) denote the data point (x, y) in the shared memory. We allocate

2R + 1 registers as well, and while they are 2R + 1 named variables in practice, for ease of presentation, we use Reg(x, y)[i] to denote theith register

of thread (x, y).
Before streaming starts, each thread (x, y) fetches data from (x, y, z) for z ← [−R … R) and stores them into register Reg(x, y)[0 … 2R), respec-

tively. Then, inside the stream loop, for each z ← [0 … Nz), we do not shift values between registers; instead, we update register Reg(x, y)[(z +
2R) mod (2R + 1)] with the value of point (x, y, z + R) as shown in Figure 3. Then, we fetch data (x, y, z) from global memory into S(x, y). Next, we

perform the stencil computation by using the data of XY-subplane from shared memory and ith data above current point from Reg(x, y)[(z + R − i)
mod (2R + 1)], and jth data below the current point from Reg(x, y)[(z + R + j) mod (2R + 1)]. Finally, the kernel stores the result back to global

memory. We use st reg fixed {Dx} {Dy} to refer to the family of kernel implementations using this strategy in our experiments.

We improve express one iteration of the computation using a macro with register indices as macro placeholders. Inside the streaming loop,

we expand 2R + 1 macro calls, each with register indices shifted by one. We check and exit the loop when the stream reaches the boundary of

the z-axis.
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5.7 2.5D streaming using semi-stencil

Like the previous approach, this implementation continues to use shared memory for an active XY-subplane and avoids moving values in registers

as much as possible for points along the streaming dimension. Rather than loading both forward and backward halos along the z-axis, only one side

of the halos is loaded into registers. While streaming along the z-axis, the semi-stencil algorithm13,14 first computes a forward partial result at the

leading edge of the halo along the streaming dimension and a few iterations later completes the stencil for that point by combining that partial result

with a backward contribution at the trailing edge of the halo.

We again allocate a tile in shared memory with (Dx + 2R) × (Dy + 2R)points. Let S(x, y)denote the shared memory for location (x, y). We allocate

only R + 1 registers, and denote Reg(x, y)[i] for the ith register of the thread (x, y). We additionally allocate R + 1 registers for storing the partial

results, and denote the ith partial result of the thread (x, y) by Part(x, y)[i]. Registers for both the x-axis points and the partial results are realized as

named variables.

To prepare for streaming, each thread (x, y) fetches data from (x, y, z) for z ← [−R … 0) and stores them into Reg(x, y)(0 … R], respectively. As

semi-stencil computes partial results, we manually iterate R steps before entering the streaming loop. For theith step, each thread (x,y) fetches the

x, y, i data and stores it into Reg(x, y)[i], and computes the partial result Part(x, y)[i] with Reg(x, y)[((i − R) mod (R + 1)) … ((i − 1) mod (R + 1))] using

the forward computation described in semi-stencil algorithm. The forward computation for a point always happens R steps ahead of its backward

computation.

Inside the streaming loop, for each z ← [0 … Nz), we update register Reg(x, y)[(z + R) mod (R + 1)] with the value of point (x, y, z + R), and keep

the other register values unmodified. Then, we perform both the forward computation for a later point z + R in the stream loop and the back-

ward computation for the current point z. Forward computation computes the partial result for point z + R, R ahead of the current point z, with

Reg(x, y)[(z mod (R + 1)) … ((z + R − 1) mod (R + 1))] and stores in Part(x, y)[z + R]. The backward computation loads the partial result Part(x, y)[z]
that has been computed in either an earlier stream loop or in the setup, and completes the stencil computation together with values from ith data

below the current point from Reg(x, y)[(z + i) mod (R + 1)]where i ← (0 … R] and from shared memory S(x, y) for the currently active 2D plane. The

kernel stores the final result back to global memory. We refer to the family of kernel implementations using this strategy as st semi {Dx} {Dy} in our

experiments.

5.8 3.5D streaming using global memory

In this section and the next, we describe two 3.5D blocking approaches. Building on the 2.5D blocking approaches described previously, 3.5D block-

ing implements a 1D overlapped tiling16 for the 2D active plane. In our implementations, we perform stencil computations for two time steps

with one round of global memory loads per block. With overlapped tiling, we redundantly load and compute points from adjacent blocks for the

overlapped region. To simplify the 3.5D implementations, we compute with a unified domain.

We denote the two time-steps in our implementation as T′ and T′′, respectively. As already described, 2.5D spatial blocking mainly streams

a 2D plane through the third dimension. Let Dx and Dy denote the dimensions of the 2D tile along the X and Y axes, respectively. A thread block

computes a Dx by Dy data tile with Dx × Dy threads. These threads compute Dx × Dy points in T′, but to accommodate the data dependencies for

one additional time-step, we back away from the tile boundary, known as the overlapped region. Thus in T′′, only (Dx − 2 × R) × (Dy − 2 × R) points

are computed based on the Dx × Dy points already computed in T′. The results of time step T′′ are then stored back to global memory, so only (Dx −
2 × R) × (Dy − 2 × R) points have the two time-step results with a 2D block of Dx × Dy threads. The GPU grid size of each data region is ⌈Nx∕(Dx −
2 × R)⌉ × ⌈Ny∕(Dy − 2 × R)⌉. Let Nt be number of total time steps in computation, instead of iterating it Nt times as in the previous implementations,

with 3.5D blocking, we only iterate Nt∕2 times.

Inside the streaming loop, for each z ← [0 … Nz), we perform a normal 25-point stencil computation for time step T′. In this global memory only

implementation, each thread fetches its own point as well as R points along each axis directly from global memory. The results of T′ are stored in

shared memory S(x, y, z) for faster access in T′′ computations. In time step T′′, however, not all threads are contributing to the computation, because

to implement temporal blocking, we use shared memory to store first time-step’s result instead of global memory, and shared memory data cannot

be shared across blocks, the data dependency for time step T′′ is only available in the shared memory. To make stencil computations correct, when

each point reads its neighbor points, because these points are now in the shared memory, so we must treat points along the border of each 2D tile as

halo points for the second time step computation. So in time step T′′, only the (Dx − 2 × R) × (Dy − 2 × R) threads at the center of the 2D tile compute

using the T′ results from shared memory. After performing two time steps of the stencil computation, the results are stored back to global memory.

There are three issues that require some additional attention for the acoustic isotropic kernel. First, as we stream a 2D plane through a 3D

data domain, to compute T′′ time step for z index, T′ results of [(z + 1) … (z + R)] from the streaming dimension are needed. In our implementations,

after computing T′ time step for a z index, we store the results into shared memory, and hold the T′′ computation for z index until the T′ results of

[(z + 1) … (z + R)] become available in a later streaming iteration. Second, since computation of the acoustic isotropic kernel is 2nd-order in time,

results for both T′ and T′′ are stored back to the global memory as both are needed in the computation of the next iteration. The need to save
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results for both time steps offsets the data movement savings obtained using time-skewing. Third, the acoustic isotropic kernel requires additional

data arrays for its computation. While they can be loaded from global memory directly in previous approaches, they have to be preserved in shared

memory for the computation in the second time step. As a result, additional shared memory space is needed for these values. Since they have no

impact on the algorithm other the data footprint in shared memory, we do not describe their use in detail. These 3.5D blocking implementations

that fetch stencil points directly from global memory for each pair of time steps are referred as ol gmem {Dx} {Dy} in our experiments.

5.9 3.5D streaming using register shifting

This 3.5D blocking approach is implemented on top of 3.5D strategy described in the previous section. Instead of fetching data directly from global

memory in time step T′, similar to its 2.5D blocking implementation, points of an active plane are loaded into shared memory first and points along

the z-axis are stored in registers.

This implementation allocates a shared memory tile of size (Dx + 2R) × (Dy + 2R) to hold the active plane and holds 2R + 1 halo points in

registers—the current point and its neighbors along the z-axis. For thread (x, y), let S(x, y) be the point in shared memory and Reg(x, y)[i] denote the

ith register.

As before, preparations are needed before the streaming iteration, with each thread (x, y) fetching data values from (x, y, z) for z ← [−R … R)
and storing them into registers Reg(x, y)(0 … 2R], respectively. For each index z ← [0 … Nz) in the streaming iteration, time step T′ shifts the register

indices and loads the leading point (x, y, z + R) into register Reg(x, y)[2R]. Next, it fetches data (x, y, z) from global memory into S(x, y). It uses data

from shared memory for the active plane and data from registers for halos along the streaming dimension. It computes results for time step T′ and

stores them into shared memory. The computation at time step T′′ remains the same as in the previous section: all time step T′ results are available

in shared memory, and we can compute just by fetching them from shared memory. We still compute only the central piece of the 2D tile in T′′ time

step. After computing two time steps, the results are stored to global memory.

The difficulties outlined in the previous section that affect the profitability of applying time-skewing to the acoustic isotropic kernel remain

in this 3.5D streaming implementation. We refer to the family of kernel implementations using this strategy as ol ref shft {Dx} {Dy} in our

experiments.

6 OPTIMIZATIONS

To improve the performance, we augmented our implementations with a variety of optimizations. In this section, we describe optimizations that

provided significant performance benefits.

6.1 Pinned memory

Our original implementation allocated data for our simulation domain using malloc to support several programming models, including OpenMP

and OpenACC. However, any data transferred between a host and a GPU must pass through page-locked memory on the host, commonly known as

pinned memory. One can avoid the need for the host to copy data in or out of pinned memory by allocating data for our simulation domain directly in

pinned memory. It is easy to adjust to this platform-specific allocation strategy. To allocate data directly in pinned memory, we usecudaMallocHost

on NVIDIA GPUs, and we use hipHostMalloc on AMD GPUs.

6.2 Constant memory

Our initial implementations stored coefficients used in the stencil computations in registers. We later relocated them to constant memory. While

accessing the coefficients in constant memory itself may not improve performance, using constant memory for stencil coefficients reduces a ker-

nel’s register footprint. In some cases, the smaller register footprint enables an increase in the number of threads in a thread block, which improves

occupancy.

6.3 Cache line alignment

To minimize the number of bytes being transferred to and from memory, it is best to align a tile’s memory accesses on cache line boundaries to avoid

kernels from unnecessarily straddling cache lines. To achieve this, padding can be added to the data array so that the length of each row is a multiple

of the cache line size on GPUs.
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F I G U R E 4 Padding strategies for cache line alignment

As shown in Figure 4, we first add padding at the end of each row as necessary, which ensures that the volume of each row is a multiple of the

cache line size.

For our stencil, thread blocks working on the PML and inner regions can have conflicting alignment preferences. We found that adding lead

padding to the array and cache-aligning the leading edge of the inner region in each row improves performance because most of the time and memory

accesses are spent applying the high-order stencil to the inner region.

6.4 Function template

To perform stencil computations with a halo size of R, threads with an index less than R away from a boundary are responsible for reading halo points.

We added conditionals to check the thread index, and threads fetch halo data when the conditionals evaluate to true. However, on GPUs, these

conditionals add stalls that hurt performance.

Our acoustic isotropic kernel has a halo size of 4. For a grid size such as 32x4x4, the conditionals are always true for the Y and Z

dimensions, and threads should always perform a halo fetch. We use a function template to eliminate conditionals for short dimensions in

such cases. We provide constants for the halo size and tile dimensions as template parameters. At compile time, an optimizing compiler

can dead code eliminate tautological conditions based on knowledge of these constants. This avoids unnecessary runtime checks and the

associated stalls, improving performance for these kernel variants. This optimization is suggested by our GPA37 tool, as are the next two

optimizations.

6.5 Code reordering

We reordered our code to read subscripted values from global memory well ahead of their use in the stencil computation. This adjustment can

overlap memory fetches with a long computation. Hiding memory latency improves performance.

6.6 Double buffering

To further hide memory latency by overlapping memory accesses with computation, our 2.5D implementations employs double buffering. Instead of

keeping just a single plane in shared memory, we allocate space for two planes in shared memory. While reading values from one plane and performing

the stencil computation at one value of z, we simultaneously load the values of the other plane with values needed for the next value for z. In each

iteration, we alternate the role of the planes, reading from one while filling the other.

Double buffering also significantly reduces synchronization stalls. Without double buffering, two barrier synchronizations are needed per

iteration to prevent data races: one after filling the plane and another after reads of the plane are complete. With double buffering, only one

barrier is required per iteration to signal that both a fill of one plane and read operations on the other are complete before swapping roles of

the planes.

NVIDIA introduced hardware support formemcpy_async in their latest A100 GPUs. When copying data from global memory to shared mem-

ory withmemcpy_async on an A100, data need not pass through the registers as it must when using older NVIDIA GPUs. This frees registers from

the task of moving data so that they can be used in the computation. To further improve performance on NVIDIA A100 GPUs, we implemented data

copies for double buffering using memcpy_async.
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7 EVALUATION

In this section, we describe how we evaluate our implementations on different GPUs, present their timing results, and discuss performance

characteristics.

7.1 Experimental platforms

We evaluated all of our kernel implementations across multiple generations of AMD and NVIDIA GPUs. For NVIDIA GPUs, we evaluated

on NVS510, P100, V100, and the newest A100. We also evaluated our kernels on AMD MI50 and MI100 GPUs. In this article, we only

report detailed results for the best performing GPUs, namely the NVIDIA V100, NVIDIA A100, and AMD MI100. Where appropriate, we

comment about performance portability of kernels to earlier GPU versions, such as NVIDIA’s NVS510 and P100 as well as AMD’s MI50.

Table 2 lists the specifications for our primary experimental platforms and their respective software stacks. We refer to these systems by their

GPU models.

We use__launch_bounds__ to specify the maximum threads per block, letting compilers limit register usage as needed to guarantee thread

block sizes up to the size specified by the launch bounds. However, we pay very close attention to the resulting register usage as it is a critical

determinant of performance.

7.2 Tools

This section describes several tools we use to evaluate the performance of stencil implementations: HPCToolkit, GPA, and the Empirical Roofline

Toolkit (ERT).

7.2.1 HPCToolkit

HPCToolkit is a full-featured suite of tools for performance measurement and analysis.38 Recently, it has been extended to support analysis of

GPU-accelerated applications.39 In this article, we use the August 2020 release of HPCToolkit to measure kernel performance using PC sampling

and associate exposed latencies and stall reasons with program source. In addition, we use HPCToolkit to collect GPU kernel metrics, such as register

usage, block size, and grid size.

HPCToolkit’s hpcviewer is a graphical user interface for analysis of program performance. Its code-centric view enables us to easily

spot source lines that have the most significant performance issues, and its trace view enables us to inspect the entire program execution

over time and identify idleness and its associated calling contexts. We describe some of our findings using HPCToolkit in our discussion of

evaluation results.

TA B L E 2 System specifications

V100 A100 MI100

CPU IBM POWER9 AMD EPYC 7402 AMD EPYC 7252

CPU cores 160 96 16

RAM 256 GB 512 GB 256 GB

GPU NVIDIA Tesla V100 NVIDIA A100 AMD MI100

CUDA cores/stream processors 5120 6912 7680

GRAM 32 GB 40 GB 32 GB

OS RHEL v7.7 RHEL v8.3 CentOS v8

Platform CUDA 11.0 CUDA 11.2 ROCm 4.1

GPU driver NV 450.51.05 NV 460.27.04 ROCm 4.1

Compiler flags -O3 -arch=sm_70 -O3 -arch=sm_80 -O3 –amdgpu-target=gfx908
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7.2.2 GPA

GPA37 is a performance tool that employs a combination of static and dynamic analysis, to provide optimization suggestions for programs executed

on NVIDIA GPUs. We use GPA to obtain optimization insights into the performance of our stencil implementations. We applied top-ranked advice

from GPA to tune several our stencils, and measured its performance impact.

7.2.3 NVIDIA tools

We use two profiling tools from NVIDIA, nvprof40 and Nsight Compute.41

We run nvprof to collect a set of metrics on a GPU, including kernel execution, data transfers, cache information, and other events for a

CUDA kernel. On V100 and older NVIDIA GPUs, we use nvprof to capture performance measurements needed for computing kernel arithmetic

intensities and other data points needed for Roofline plots described in the next section.

Nsight Compute (ncu)41 provides insights when performance differences are driven by the kernel characteristics. We run Nsight Compute to

examine such characteristics, including theoretical and achieved occupancy. When low occupancy happens, Nsight Compute reports whether or not

the problem seems to be associated with the register footprint, the shared memory footprint, or the number of threads. On the A100, we also use

Nsight Compute for performance metrics collection for Roofline analysis.

Profiling using Nsight Compute has a huge measurement overhead, as it replays every kernel execution multiple times to collect a complete set

of measurements. To profile our high-order stencils on a large data volume with 1000 iterations, it takes an unreasonable amount of time to finish.

So, when we use Nsight Compute, we use it to measure only five iterations. We run 1000 iterations when profiling with nvprof as its overhead is

acceptable.

7.2.4 AMD rocprofiler

We use rocprofiler42 from AMD to collect hardware performance counters for kernels running on AMD GPUs.

7.2.5 Roofline performance model

The Roofline43 performance model visually shows code performance with relative to a machine’s practical peak performance. It combines a code’s

arithmetic intensity, memory bandwidth, and performance into a single chart. It also can provide some optimization insights by comparing a code’s

performance against a platform’s performance ceiling.

Recently, the Roofline model has been extended for GPUs. To capture the performance characterizations for our experimental platforms, we use

the ERT,44 which empirically measures the performance of a GPU using benchmarks. It provides us with a GPU’s achievable performance bound for

computations with various arithmetic intensities. For memory-bound kernels such as high-order stencils, the achievable peak, as limited by memory

bandwidth, is substantially lower than the theoretical peak claimed by the manufacturers.

We characterize kernels using NVIDIA’snvprofonV100 andncuonA100by measuring several kernel performance metrics, including FLOPs,

L2 read and write transactions, as well as DRAM read and write transactions. We wrote a Python script that takes the output from eithernvprofor

ncu and calculates both the performance and the arithmetic intensity for each kernel. Performance is calculated by dividing the measured FLOPS

by the recorded execution time. Arithmetic intensities are calculated by dividing the measured FLOPS by the measured bytes accessed on DRAM

and L2 cache, respectively.

We identify the performance gap between the kernel performance and the peak performance possible for a kernel on a particular GPU given the

kernel’s arithmetic intensity. We then consider how to increase the arithmetic intensity of a kernel to increase the maximum achievable performance.

We also compare kernels by their arithmetic intensities and their relative performance.

7.3 Evaluation methodology

We evaluate all implementations and their variants. Our kernels are written in CUDA, and they can be compiled and directly on NVIDIA platforms.

For AMD GPUs, we use AMD’s hipify tool to transform CUDA source code to HIP code. Depending on the platform, we compile kernels with

NVIDIA’s nvcc or AMD’s hipcc.
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For each machine, we run the kernels with a large grid size based on its device memory size. We use the same grid size of 10003 forV100,A100,

and MI100. For benchmarking, we measure 1000 iterations of all kernels on all machines.

First, we collect time measurements for each kernel. We warm up the kernel by running the entire execution once, then we repeat it 10 times

and record the average time and the standard deviation of the 10 runs.

Second, we use HPCToolkit’s GPU support to profile the kernel details with PC sampling. Third, we run GPA and look for optimization oppor-

tunities. Finally, we measure device-specific kernel characteristics and metrics using Nsight Compute. We calculate the arithmetic intensity and

performance metrics of every kernel. We used the ERT to measure our experimental platforms and compare our kernel performance with respect

to the empirical machine performance roofline. We describe each of our evaluation methods below.

7.4 Results

In this section, we first present a summary of our results in tables and plots. After presenting our findings, we discuss our kernel measurements from

several perspectives.

Table 3 presents time measurements for the kernels. For 3D blockings, the columns Dx, Dy, and Dz stand for the block dimensions along the x,

y, and z axes, respectively. For 2.5D and 3.5D blockings, only columns for Dx and Dy are reported since the z-axis is unpartitioned. For each system,

we show each kernel’s average execution time and standard deviation. Table 3 has three sections. The first section contains the time measurement

for kernel implementations of our own. The second section presents the measurements of a code version, that NVIDIA optimized from our global

memory implementation. While this code version is tuned for NVIDIA GPUs, we also hipify this implementation, ran it on the MI100 GPU, and

recorded its time measurements. The third section has the measurements for a code version provided by AMD, this code version is fine tuned for

AMD MI100 system, and we also ran it on NVIDIA systems. Table 4 presents the kernel characteristics of each 25-point stencil applied to the inner

data region.

Table 5 presents the performance characteristics of our implementations on the A100 GPU. We combine the metrics from both inner region

and PML region in the same table, so that we can discuss the entire execution. Figure 5 compares the performance of select top-performing kernels

with the performance bound imposed by GPU DRAM bandwidth using the roofline performance model. The y-axes of these figures represent the

performance in GFLOPs/second and x-axes show arithmetic intensity in FLOPs/byte.

In the rest of the section, we discuss our findings.

7.4.1 3D blocking using global memory

As shown in Table 3, simple kernel implementations using only GPU global memory yield great performance on the latest GPUs, NVIDIA V100 and

A100. Since Tesla V100, L1 data cache and shared memory are combined into a single unified memory block, providing a large data cache size. When

accessing data from global memory with a good access pattern that exploits global memory coalescing, we can achieve very good performance.

While the 3D kernel had great performance on NVIDIA’s latest GPUs, it is one of the slowest implementations on older NVIDIA GPUs, such as

P100 and NVS510. So its performance portability is poor.

For the 3D global memory kernel, we evaluated several thread block size variants of the global memory implementation are evaluated,

from small to large, including gmem_4x4x4, gmem_8x8x4, gmem_8x8x8, gmem_16x16x4, gmem_32x4x4, gmem_32x8x4, gmem_32x32x1. We

observe the following phenomena: First, when loading the points before performing stencil computations, for kernels with smaller block sizes, the

halo size for our 25-point stencil dominates the actual data points. Therefore, more time is spent on loading halos than the points for the volume

to be computed, which hurts performance. In addition, smaller block size also leads to larger GPU grid size, which results in more kernel launches.

These additional overheads from kernel launches slow the overall execution. Second, with a good cache line alignment, the 3D blocking kernels with

a larger innermost dimension tend to perform better.

In summary, despite that the global memory implementations are the simplest to program and need very little performance tuning, with the

right tile shape and using a good global memory access pattern, one can achieve amazingly good performance with little effort on the late-model

GPU architectures. The simplicity and the low optimization effort make the global memory implementations a very attractive option from a software

engineering perspective, as they are easy to understand and have a low maintenance cost.

7.4.2 Shared memory

Table 3 shows that using shared memory can boost performance. The performance gain is more significant on older generation GPUs, such as P100

and NVS510, which is consistent with results in previous research. We attribute this to the architectural changes in V100, which combines the L1
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TA B L E 3 Time measurement on V100, A100, and MI100

Kernel System

Kernel identifier Dx Dy Dz

V100 A100 MI100

Avg. SD Avg SD Avg. SD

gmem_8x8x8 8 8 8 53.65 0.02 31.82 0.51 612.08 0.03

gmem_32x8x4 32 8 4 49.81 0.02 27.21 0.03 56.90 0.05

gmem_32x4x4 32 4 4 47.62 0.03 25.66 0.04 48.50 0.03

smem_u_8x8x8 8 8 8 54.96 0.01 33.00 0.16 310.19 0.02

smem_u_32x8x4 32 8 4 49.87 0.01 29.54 0.06 45.71 0.09

smem_u_32x4x4 32 4 4 46.62 0.02 25.01 0.04 44.95 0.02

smem_eta_1_8x8x8 8 8 8 54.36 0.01 34.66 0.22 597.76 0.02

smem_eta_3_8x8x8 8 8 8 55.27 0.02 34.93 0.18 592.76 0.06

st_smem_16x8 16 8 – 55.97 0.03 35.37 0.09 100.73 1.06

st_smem_16x16 16 16 – 51.77 0.01 35.78 0.10 65.95 0.69

st_reg_shft_16x16 16 16 – 59.84 0.04 33.50 0.07 69.35 1.53

st_reg_shft_32x16 32 16 – 48.89 0.01 30.86 0.05 49.16 0.08

st_reg_shft_32x32 32 32 – 50.50 0.01 33.31 0.05 47.02 0.20

st_reg_shft_16x16 (db) 16 16 – 67.92 0.03 31.63 0.04 75.25 0.62

st_reg_shft_32x16 (db) 32 16 – 53.99 0.01 23.23 0.05 47.80 0.10

st_reg_shft_32x32 (db) 32 32 – 55.06 0.01 23.76 0.04 45.87 0.16

st_reg_fixed_16x16 16 16 – 59.51 0.01 31.87 0.05 69.47 0.86

st_reg_fixed_32x16 32 16 – 46.28 0.01 25.99 0.04 51.04 0.15

st_reg_fixed_32x32 32 32 – 47.19 0.00 27.34 0.03 48.94 0.16

st_reg_fixed_16x16 (db) 16 16 – 60.04 0.02 29.63 0.07 86.02 0.85

st_reg_fixed_32x16 (db) 32 16 – 44.15 0.02 22.29 0.03 56.37 0.54

st_reg_fixed_32x32 (db) 32 32 – 43.93 0.00 22.84 0.04 54.40 0.42

st_semi_16x16 16 16 – 59.68 0.03 31.66 0.04 68.73 1.72

st_semi_32x16 32 16 – 46.43 0.02 25.92 0.05 48.69 0.16

st_semi_32x32 32 32 – 47.06 0.00 27.54 0.03 45.38 0.29

st_semi_16x16 (db) 16 16 – 67.64 0.03 29.26 0.03 68.50 0.69

st_semi_32x16 (db) 32 16 – 49.75 0.01 22.14 0.04 47.36 0.07

st_semi_32x32 (db) 32 32 – 49.46 0.01 23.37 0.04 45.76 0.06

ol_gmem_16x16 16 16 – 337.21 0.68 101.67 0.43 346.20 0.09

ol_gmem_24x24 24 24 – 128.31 0.12 64.05 0.28 144.82 0.05

ol_reg_shft_16x16 16 16 – 168.26 0.04 86.94 0.34 344.26 0.16

ol_reg_shft_24x24 24 24 – 158.83 0.04 80.38 0.23 145.32 0.03

nv_gmem_f4 32 4 4 43.55 0.03 21.84 0.02 83.09 0.03

amd_reg_shft 32 16 – 46.12 0.25 24.12 0.04 38.11 0.96

Note: Kernels with (db) use double buffering.
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TA B L E 4 Characteristics of a 25-point stencil kernel for the interior region characteristics on the A100

Kernel identifier Block size Grid size

Registers

per thread

Theoretical

active warps

Theoretical

occupancy

Achieved

occupancy

Achieved

active warps

gmem_8x8x8 512 1,685,159 32 64 100 86.08 55.09

gmem_32x8x4 1,024 846,090 32 64 100 79.67 50.99

gmem_32x4x4 512 1,685,070 32 64 100 87.01 55.69

smem_u_8x8x8 512 1,685,159 28 64 100 94.27 60.33

smem_u_32x8x4 1,024 846,090 28 64 100 92.98 59.51

smem_u_32x4x4 512 1,685,070 26 64 100 93.33 59.73

smem_eta_1_8x8x8 512 1,685,159 32 64 100 86.08 55.09

smem_eta_3_8x8x8 512 1,685,159 32 64 100 86.09 55.10

st_smem_16x8 128 7,140 48 40 62.50 59.68 38.19

st_smem_16x16 256 3,600 48 40 62.50 60.08 38.45

st_reg_shft_16x16 256 3,600 48 40 62.50 59.98 38.39

st_reg_shft_32x16 512 1,800 48 32 50 48.64 31.13

st_reg_shft_32x32 1,024 900 48 32 50 50.00 32.00

st_reg_shft_16x16 (db) 256 3,600 32 64 100 93.86 60.07

st_reg_shft_32x16 (db) 512 1,800 32 64 100 93.29 59.71

st_reg_shft_32x32 (db) 1,024 900 32 64 100 95.15 60.89

st_reg_fixed_16x16 256 3,600 54 32 50 48.35 30.94

st_reg_fixed_32x16 512 1,800 54 32 50 48.66 31.14

st_reg_fixed_32x32 1,024 900 54 32 50 50.00 32.00

st_reg_fixed_16x16 (db) 256 3,600 64 32 50 48.78 31.22

st_reg_fixed_32x16 (db) 512 1,800 64 32 50 48.83 31.25

st_reg_fixed_32x32 (db) 1,024 900 64 32 50 49.99 31.99

st_semi_16x16 256 3,600 54 32 50 48.41 30.98

st_semi_32x16 512 1,800 55 32 50 48.62 31.11

st_semi_32x32 1,024 900 55 32 50 50.00 32.00

st_semi_16x16 (db) 256 3,600 62 32 50 48.67 31.15

st_semi_32x16 (db) 512 1,800 62 32 50 48.80 31.23

st_semi_32x32 (db) 1,024 900 62 32 50 50.00 32.00

Note: Kernels with (db) use double buffering.

data cache with shared memory. As discussed previously, on the V100, with good access patterns for global memory, one can achieve great per-

formance with little effort. The overhead of using shared memory on the V100 in 3D blocking introduced overheads that slow all but the 32x4x4

kernel compared to the corresponding global memory variants. In contrast, older generation GPUs do not have this new feature, so shared memory

provides performance benefits that outweigh its overhead.

It is not hard to fill the shared memory provided by GPU hardware when using high-order stencils, which have a large halo size. Limited shared

memory capacity precludes using large block sizes for high-order stencils while staging all data in shared memory.

7.4.3 Mediocre performance of several kernels on the MI100

Despite that the majority of the MI100 results are on-par with those on the V100, our results in Table 3 show unexpected (not seen in MI50) perfor-

mance on the MI100 for all the 3D blocking kernels with shape of8x8x8. We collected performance counters forgmem_8x8x8 andgmem_32x4x4
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TA B L E 5 Kernel performance characteristics on the A100

Kernel

identifier FLOP (×1013)

Achieved

performance

(GFLOPs)

L2 transactions

(×1012)

L2

arithmetic

intensity

L2

achieved

percentage

DRAM

transactions

(×1011)

DRAM

arithmetic

intensity

DRAM

achieved

percentage

gmem_8x8x8 4.453 1302 1.88 0.74 68.52% 8.31 1.67 63.55%

gmem_32x8x4 4.453 1523 1.69 0.82 72.07% 9.45 1.47 84.49%

gmem_32x4x4 4.453 1616 1.83 0.76 82.75% 9.45 1.47 89.61%

smem_u_8x8x8 4.453 1256 1.92 0.72 67.47% 8.36 1.67 61.63%

smem_u_32x8x4 4.453 1403 1.72 0.81 67.40% 9.51 1.46 78.33%

smem_u_32x4x4 4.453 1657 1.86 0.75 85.96% 9.48 1.47 92.25%

smem_eta_1_8x8x8 4.453 1196 1.90 0.73 63.50% 8.35 1.67 58.66%

smem_eta_3_8x8x8 4.453 1187 1.89 0.73 62.79% 8.35 1.67 58.21%

st_smem_16x8 4.453 1172 1.47 0.94 48.27% 8.17 1.70 56.23%

st_smem_16x16 4.453 1159 1.37 1.02 44.32% 7.80 1.78 53.04%

st_reg_shft_16x16 4.453 1237 1.49 0.93 51.47% 7.90 1.76 57.39%

st_reg_shft_32x16 4.453 1343 1.33 1.05 49.96% 7.57 1.84 59.75%

st_reg_shft_32x32 4.453 1244 1.29 1.08 44.71% 7.44 1.87 54.36%

st_reg_shft_16x16 (db) 4.453 1310 1.52 0.92 55.50% 8.43 1.65 64.88%

st_reg_shft_32x16 (db) 4.453 1784 1.39 1.00 69.25% 7.68 1.81 80.42%

st_reg_shft_32x32 (db) 4.453 1745 1.34 1.04 65.07% 7.58 1.84 77.66%

st_reg_fixed_16x16 4.453 1301 1.43 0.97 51.91% 7.84 1.78 59.87%

st_reg_fixed_32x16 4.453 1595 1.30 1.07 58.05% 7.67 1.82 71.79%

st_reg_fixed_32x32 4.453 1516 1.26 1.11 53.19% 7.43 1.87 66.19%

st_reg_fixed_16x16 (db) 4.453 1399 1.53 0.91 59.60% 8.02 1.74 65.87%

st_reg_fixed_32x16 (db) 4.453 1859 1.39 1.00 72.36% 7.68 1.81 83.85%

st_reg_fixed_32x32 (db) 4.453 1815 1.31 1.06 66.41% 7.44 1.87 79.27%

st_semi_16x16 4.889 1438 1.46 1.05 53.33% 7.85 1.95 60.33%

st_semi_32x16 4.889 1756 1.32 1.16 58.93% 7.59 2.01 71.32%

st_semi_32x32 4.890 1653 1.27 1.20 53.36% 7.43 2.06 65.70%

st_semi_16x16 (db) 4.890 1556 1.49 1.02 59.04% 7.98 1.91 66.38%

st_semi_32x16 (db) 4.890 2056 1.36 1.12 71.26% 7.59 2.01 83.43%

st_semi_32x32 (db) 4.891 1948 1.29 1.19 63.67% 7.38 2.07 76.88%

ol_gmem_16x16 11.030 1010 5.95 0.58 67.81% 16.81 2.05 40.26%

ol_gmem_24x24 7.198 1046 3.02 0.75 54.56% 11.00 2.04 41.81%

ol_reg_shft_16x16 11.030 1181 3.61 0.96 48.03% 15.36 2.24 43.00%

ol_reg_shft_24x24 7.198 833 1.72 1.31 24.77% 7.26 3.10 22.00%

Note: Kernels with (db) use double buffering.
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F I G U R E 5 DRAM roofline chart for top performers on the A100

and found that gmem_8x8x8 incurred 4 times L2 cache hits compared to gmem_32x4x4while these two kernels have similar numbers of L2 cache

misses and similar numbers of dynamic scalar and vector instruction counts. AMD GPUs currently do not provide performance counters for L1

cache, but our results strongly indicates that the abysmal performance for gmem_8x8x8 is caused by excessive L1 cache conflict misses.

7.4.4 Code shape for 2.5D blockings

For implementations using 2.5D-blocking, we observe that a larger 2D plane tends to have better performance. There are two main reasons for this.

First, a larger 2D plane brings a higher degree of concurrency. Second, the halo-to-point ratio is smaller for a larger 2D plane, which boosts overall

performance.

A larger 2D plane means a bigger thread block, which demands more hardware resources, which puts pressure on GPU resources such as reg-

isters and shared memory. Fully utilizing a GPU’s hardware resources to achieve top performance requires a delicate balance between completing

concerns, for example, register pressure and thread block size. Our results show that, 2.5D kernels with a block size of 32x16 perform better than

32x32, because with the same hardware quota per thread block, 32x16 tiles have more resources per thread, which leads to better performance.

7.4.5 Register footprint in 2.5D blockings

With the maximum 2D plane size allowed by GPUs, high-order stencils with blocks of 1024 threads struggle with register pressure. We evaluated

the variants of the st_reg_shft_∗ implementations with 2D plane size of 1024, namely st_reg_shft_16x64, st_reg_shft_32x32, and

st_reg_shft_64x16, and they show lower performance results. The performance degradation is caused by register spilling. The maximum num-

ber of registers in a threadblock is 64 ∗ 1024 = 65,536. Because we have 1024 threads for these implementations, we can only have maximum 64

registers for each thread. If we do not explicitly specify the register count nor provide hints to compilers, nvcc assigns 80 and 96 registers to the

PML and inner kernels, respectively. Running the generated binaries for these register footprints yields the CUDA error oftoo many resources

requested for launch. We use __launch_bounds__ to instruct the compilers to limit the maximum number of registers per thread to sup-

port parallelism up to the specified level. (For NVIDIA GPUs, one can also use compiler flag-maxrregcount=64 to achieve the same goal.) However,

64 registers are not enough to hold all of the variables at the same time, causing register spilling. The register shifting approach exacerbates register

spilling due to its high frequency of register access.

Although register spilling occurs in both the register shifting and register fixed kernels, for the register fixed kernels, we do not see a perfor-

mance degradation because the code uses fixed registers with loop unrolling. We illustrate the differences in Figure 3. Because most of the values
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in registers are kept stationary, the frequency of register data movement is smaller than for kernels that use the register shifting approach. This

enables the performance impact of register spilling to be amortized by other thread activities.

7.4.6 Semi-stencil

We believe that we are the first to implement the semi-stencil algorithm on GPUs, and it shows excellent performance on all GPUs. Table 3 shows that

st_semi_32x16 kernel with double buffering using A100’s memcpy_async is the fastest kernel on the A100 and among all of our experiments.

By increasing arithmetic intensity and changing the ratio between loads and stores, the semi-stencil algorithm can improve the performance of

high-order stencils not only on CPUs but also on GPUs. For a 3D stencil with halo size of R, with typical approach, it requires to load 6 ∗ R + 1 points

in order to perform stencil computation for one point. Once the computation is done, a single store writes the result back. So the load-store-ratio

for the u-array is (6 ∗ R + 1) ∶ 1. Our semi-stencil strategy, on the other hand, only reads the center point and one side of the halo with R + 1 loads on

the streaming dimension. Instead of one single store at the end of stencil computation, semi-stencil requires one additional store to save the partial

results from the forward phase, resulting in a total of two stores. The load-store-ratio for our semi-stencil implementation on the Z-dimension is

(R + 1) ∶ 2, and remains the same for the other two dimensions. Because our semi-stencil approach trades R loads for one load and one store, even

on just one dimension, this is very appealing for high-order stencils because the larger the halo size R, the higher potential benefits one could achieve.

7.4.7 Impact of memory-related optimizations

We discussed a few memory-related optimizations such as using pinned memory, constant memory, and cache line alignment, in Section 6. Each of

them improves performance. We use thegmem_32x4x4kernel to illustrate their performance impact. Allocating data directly in the pinned memory

avoids extra copy in and out of GPU from host memory, and it yields a 1.02× speedup. While storing coefficients used in the stencil computations into

constant memory provides us speed up that is barely measurable for this kernel, it lowers register pressure, which is important for other kernels.

Cache line alignment significantly improves performance. To align memory access with cache line boundaries, we add padding to the end of each row,

as well as the leading edge of the inner region. The padding between rows yields an 1.03× speedup, and adding the leadpad yields a 1.09× speedup,

and two paddings together yield a total of 1.12× speedup.

7.4.8 Function template

We used function templates to eliminate stalls caused by the branch conditions. For kernels with grid size of 32 × 4 × 4, because the number of

threads on the Y and Z axis are all equal to the halo size, threads always perform a halo fetch. Using function templates to provide the grid block

size as a constant in the kernel enables the compiler to remove the conditional checking at compilation time. Our experiments show that, for

smem_u_32x4x4, this optimization provides a 1.07× speedup.

7.4.9 Double buffering

On the A100, with the use ofmemcpy_async, double buffering always improves performance, which illustrates the utility of this new feature. How-

ever, employing double buffering on other GPUs may degrade performance due to increased register pressure because copies to shared memory go

through the registers. Table 3 shows a performance degradation for 2.5Dreg_shft_* kernels on the V100, as well as 2.5Dref_fixed_* kernels

on the MI100.

7.4.10 3.5D blocking

Overlapped tiling introduces redundant computation, which is costly for high-order stencils, as the overlap region is large for high-order stencils.

The large overlap region not only increases the level of redundant computation, but also the data volume needed for the computation. Hardware

resource requirements also restrict our 2D tile size, which limits the number of time steps we can do in a single pass.

For first-order algorithms, overlapped tiling reduces data movement because it can advance multiple time steps and write out only the result of

the final time step. However, the acoustic isotropic kernel, which is second-order in time, requires data values for both the current time step and the

previous time step. A second-order kernel computing two time steps in a single pass using a 3.5D approach must write both the final time step and
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the previous time step as input for the next iteration. This doubles the number of writes compared to the 2.5D algorithm, which only needs to write

the value computed in the current time step and retain the value from the previous time step. The cost of the extra array write for the second-order

3.5D algorithm, the redundant computation for the 3.5D algorithm, and the additional shared memory footprint to accommodate a double-width

halo outweigh the benefits of computing two time steps in a single pass over the data domain.

Furthermore, using a unified domain, which is necessary for time skewing, adds overhead due to branch divergence from conditionals.

In our experience, manually writing 3.5D implementations is a challenging task, which makes it difficult to combine with other algorithmic

approaches.

7.4.11 GPU occupancy

We observe from Table 4 that, while 3D blocking implementations have higher theoretical occupancies, 2.5D blocking realizes a higher achieved

occupancy.

7.4.12 Performance portability

Table 3 clearly shows that implementations using 2.5D blocking have a better performance portability. The good performance portability can be

seen not only on generations of GPUs from the same vendor, but also GPUs from different vendors.

7.4.13 Gaps to the roofline ceilings

We offer two interpretations for the performance gaps observed in our implementations:

While our current implementations already achieve good performance for high-order stencils with boundary conditions, we see tuning oppor-

tunities for additional performance. We can design new GPU code shapes to improve arithmetic intensities, and we can apply other algorithmic

approaches to increase performance. We manually wrote our implementations, in the future, we can develop a new DSL approach or build a

framework that enables us to explore more sophisticated approaches.

In contrast to the ERT, which uses simple micro-benchmarks for profiling the machines, acoustic isotropic kernels are complex. Their high-order

with boundary conditions produces high memory pressure on GPUs. Their complex multiple statements also have challenges to efficiently utilize all

GPU resources, making it difficult to hit the roofline ceiling.

7.4.14 NVIDIA code version

Given a copy of our codes, NVIDIA producednv_gmem_f4, a variant of ourgmem_32x4x4implementation. Instead of using the typicalfloatdata

type, it employs the CUDA built-in vector type float4 for the innermost dimension. nvcc generates the LD.128 instruction for float4 to allow

for coalesced access to a vector of fourfloat elements. On theA100, forgmem_32x4x4, this yields a 1.17× speedup. We also applied thefloat4

to our other global memory implementations, and we can observe similar performance improvements on NVIDIA systems.

The hipified version of this implementation has a degraded performance on the MI100GPU.

7.4.15 AMD code version

Given a copy of our codes, AMD produced amd_reg_shft, a kernel similar to our register “shifting” implementation. It improves performance by

further dividing the inner region into smaller blocks on the z-dimension. Cutting the inner region along the z-dimension reduces load imbalance and

keeps the GPU busy. This strategy improves performance on the MI100GPU.

This code version is also competitive on the V100, but slightly shy of our register “shifting” performance on the A100GPU.

8 CONCLUSIONS AND FUTURE WORK

This article evaluates the performance of high-order stencils with boundary conditions on several generations of AMD and NVIDIA GPUs. Our

experiments show that the key to performance for a high-order stencil is to maximize utilization of GPU threads by using the tile size as large as
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possible without exceeding GPU resource bounds. The GPU algorithms also need to be carefully designed to avoid over-consumption of limited

resources. Also, data layout and padding have a surprisingly large impact on performance. Careful alignment of tiles with cache lines significantly

improves performance. We noticed that kernel implementations that compute stencils directly from global-memory, despite being the simplest,

deliver reasonably good performance on NVIDIA’s V100 and A100 GPUs. We also observed that 2.5D streaming algorithms deliver excellent per-

formance and have the best performance portability across generations of GPUs from different vendors. In addition, semi-stencil algorithm also

show great applications on GPUs for high-order stencils.

Our evaluations on 3.5D algorithms are based on manually written kernels. To ease the implementation, we chose the unified domain data

decomposition while knowing its inefficiency caused by branch divergence from our early experiments. Our results once again show this branch

divergence on GPUs is costly. We plan to develop a DSL or build a framework that automates code generation, which will facilitate composing tuning

strategies and applying them to other high-order stencils. Automated code generation will also help us to migrate our kernels on emerging acceler-

ators to evaluate performance portability on a broad range of platforms. In the immediate future, we plan to evaluate our approaches on stencils

for other commonly used seismic imaging approximations to the wave equation.
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