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Abstract—Developing efficient GPU kernels can be difficult
because of the complexity of GPU architectures and programming
models. Existing performance tools only provide coarse-grained
tuning advice at the kernel level, if any. In this paper, we describe
GPA, a performance advisor for NVIDIA GPUs that suggests
potential code optimizations at a hierarchy of levels, including
individual lines, loops, and functions. To relieve users of the burden
of interpreting performance counters and analyzing bottlenecks,
GPA uses data flow analysis to approximately attribute measured
instruction stalls to their root causes and uses information about
a program’s structure and the GPU to match inefficiency patterns
with optimization strategies. To quantify the potential benefits
of each optimization strategy, we developed PC sampling-based
performance models to estimate its speedup. Our experiments
with benchmarks and applications show that GPA provides
insightful reports to guide performance optimization. Using GPA,
we obtained speedups on a Volta V100 GPU ranging from 1.01×
to 3.58×, with a geometric mean of 1.22×.

Index Terms—High performance computing, Performance
analysis, Parallel programming, Parallel architectures

I. INTRODUCTION

Graphics Processing Units (GPUs) have been extensively

employed in data centers and supercomputers as a building

block to accelerate High-Performance Computing (HPC) and

machine learning applications. However, fully utilizing the

compute power of GPUs is challenging. Tuning GPU code to

achieve the maximum possible performance requires significant

manual effort to tailor an application to best exploit a GPU’s

characteristics.

GPU profilers [1]–[7] are widely used for measuring GPU-

accelerated applications. While these tools identify hot GPU

code, they lack sophisticated analysis of performance bottle-

necks and provide little insight into how to improve the code.

nvprof and Nsight-Compute, for example, analyze performance

measurement data and propose suggestions at the kernel level

but do not identify specific lines that could be optimized

nor estimate the potential gain after applying optimizations.

As a result, even with GPU profilers, diagnosing and fixing

performance problems requires expertise in interpreting mea-

surement data and associating suggestions with corresponding

bottlenecks.

Prior tools for GPUs [8]–[10] provide fine-grained sug-

gestions using instrumentation-based methods to quantify the

severity of performance problems and locate problematic code.

These tools identify one or a few patterns, such as redundant

value/address, insufficient cache utilization, or memory transac-

tion burst, but overlook others. Moreover, they do not correlate

execution time with the patterns. As a result, one may fix

specific problems indicated by the tools but not achieve any

speedup.

Modern processors support fine-grain measurement using

sampling [11]–[14], which can be used to study instruction

statistics in applications quantitively. Unique among GPU

vendors, NVIDIA provides PC sampling on its GPUs to monitor

code execution and associate instructions with stalls of various

kinds. Existing performance tools [3]–[5], [7], [15] that utilize

PC sampling only associate instruction samples with source

lines of GPU code where the stalls occur but lack the ability

to derive performance insight based on stall reasons.

To complement the aforementioned approaches, we propose

GPA—a GPU performance advisor that suggests effective

optimizations for GPU code, and evaluate GPA on a V100 GPU

with the Rodinia benchmarks [16], several larger application

benchmarks, and a combustion application. Guided by GPA, we

improved the performance of the GPU kernels studied by 1.02×
to 3.58×. This paper describes the design and implementation

of GPA which includes the following key components:

• an instruction blamer, which attributes stalls to instructions

that cause them,

• performance optimizers, which match inefficiency patterns

with optimization suggestions for lines, loops, and func-

tions based on program structure, architectural features,

measurement data, and control flow, and
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Fig. 1: A mental model of PC sampling on an SM of NVIDIA’s V100 GPU.
Samples are taken every N cycles. Samples at N , 4N , and 6N are latency
samples, and others are active samples. Samples at N , 3N , 4N , 5N , and 6N
are stall samples.

• performance estimators, which model GPU execution

using instruction samples to estimate speedups for each

optimizer.

This rest of the paper is organized as follows. Section II

reviews PC sampling and the instruction format on NVIDIA’s

GPUs. Section III introduces the workflow of GPA. Section IV

explains the details of GPA’s instruction blamer. Section V

describes the implementation of GPA’s performance optimizers

and estimators. Section VI describes the analysis and optimiza-

tion of GPU kernels using GPA. Section VII presents case

studies of four larger codes, including a combustion application.

Section VIII reviews related work and distinguishes GPA.

Finally, Section IX summarizes our work and outlines our

plans for future work.

II. BACKGROUND AND MOTIVATION

In this section, we describe background necessary to under-

stand our work and our motivation for developing GPA. In

Section II-A, we introduce a model of the PC sampling mech-

anism implemented in recent NVIDIA GPUs. In Section II-B,

we describe the instruction format used by NVIDIA’s GPUs,

which is important for instruction dependency analysis. In

Section II-C, we show how raw PC sampling measurements

are insufficient to provide insight for performance optimization.

A. PC Sampling

NVIDIA’s GPUs implement PC sampling to collect instruc-

tion samples. One can use NVIDIA’s CUPTI API [17] to collect

PC samples for GPU-accelerated applications. Each streaming

multi-processor (SM) in an NVIDIA GPU collects samples

individually. When a buffer used to collect samples is full on

an SM, CUPTI merges samples from all SMs and transfers

the samples to the CPU.

Each SM on an NVIDIA V100 has four warp schedulers, and

each warp scheduler is assigned several active warps to execute.

At the end of each sampling period, an SM records a sample

for one of its warp schedulers and it cycles through its warp

schedulers in a round-robin fashion. When a warp is sampled,

two classes of samples are recorded: an active sample when the

warp scheduler is issuing an instruction (at least one warp is

active) and a latency sample when no instruction is issuing (all

warps are inactive). For the instruction sampled, a stall reason

(e.g., waiting for a value from memory) is recorded for the

instruction, if any. Consider Figure 1 as an example. Because

there are three latency samples and three active samples, we

estimate both the stall ratio and the active ratio of the SM as

3/6. Assuming all SMs on the GPU have a similar workload,

we estimate both the stall ratio and the active ratio of the GPU

kernel as 3/6. In our example, there are five samples with a

stall reason. We call such samples stall samples or stalls in

the remaining sections.

B. Instruction Format

A fixed length instruction encoding is used on NVIDIA’s

GPUs. Pre-Volta GPUs use a 64-bit word for an instruction,

but Volta and later architectures use a 128-bit word. In this

paper, we focus on the Volta architecture used in two of the

top three supercomputers—Summit and Sierra.

Among the fields of a GPU instruction shown in Table I,

we focus on the following three key fields:

• Wait Mask and Write/Read Barrier. Every GPU

instruction has a control code [18], [19] field that encodes

information to guide the warp scheduler as it issues

instructions, including stall cycles, yielding flag, and

dependencies. For each fixed latency instruction (e.g., most

arithmetic instructions), the assembler sets stall cycles for

the instruction to indicate how long the scheduler should

wait before issuing the instruction. For each variable

latency instruction, the assembler associates write/read

barrier indices with it and associates instructions that

depend on them with a wait mask to create dependencies.

• Predicate. If an instruction’s predicate field is set, the

instruction is executed when the predicate evaluates as

true. There are both true and false predicate conditions: Pi

is a true predicate condition, and !Pi is a false predicate

condition, where 0 ≤ i ≤ 6. In Table I, the LDG instruction

is executed if P0 is true.

• Opcode, Modifiers, and Operands. Each thread can use

up to 255 32-bit regular registers ranging from R0-R254.

Opcode and modifiers together determine the length of

operands used. In Table I, the 32 modifier indicates each

thread reads a 32-bit value from memory. Moreover,

because the data is loaded from global memory, which

has a 64-bit address space, the source operand is a 64-bit

value comprised of two registers—R2 and R3.

C. Motivating Examples

We refer to a collection of instruction samples and their

stall reasons as a raw PC sampling report from which we

can determine a kernel’s stalls and their reasons. However,

diagnosing the slowness of the kernel still requires interpreta-

tion of instruction stall measurements to answer the following

questions.

• Which GPU instructions cause stalls?
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TABLE I: DISSECTION OF THE FIELDS OF “@P0 LDG.32 R0, [R2]” INSTRUCTION.

Wait Mask Write Barrier Read Barrier Predicate Opcode Modifiers Destination Operands Source Operands

B0 B1 P0 LDG 32 R0 R2, R3

• How can we improve performance by eliminating these

stalls?

• What is the estimated speedup for each potential opti-

mization?

To illustrate the importance of analyzing stall reasons and

associating them with optimizations, we analyze the hotspot

and b+tree examples in Rodinia benchmark.

1 for (int i = 0; i < iteration; i++) {

2 temp_t[ty][tx] =

3 temp_on_cuda[ty][tx] + step_div_Cap * (

4 power_on_cuda[ty][tx] + (temp_on_cuda[S][tx] +

5 temp_on_cuda[N][tx] - 2.0 * temp_on_cuda[ty][tx]) *

6 ...

7 }

Listing 1: A hot loop in the hotspot example.

Listing 1 shows a hot loop of the hotspot kernel. The raw PC

sampling report for this kernel indicates large execution latency

stalls on Line 2, but it provides little information regarding

where the stalls come from and what optimizations apply. GPA

attributes the latency to type conversion instructions that demote

a 64-bit float to a 32-bit float. Though all arrays are composed

of 32-bit values, the compiler generates conversion instructions

as a float constant multiplies a 32-bit float value. GPA suggests

specifying the type of the constant (2.0) as a 32-bit value to

avoid conversion. After applying the optimization, we achieved

a 1.14× speedup.

1 for (int i = 0; i < height; i++) {

2 if ((knodesD[currKnodeD[bid]].keys[thid] <= startD[bid]) &&

3 (knodesD[currKnodeD[bid]].keys[thid+1] > startD[bid]))

4 ...

5 __syncthreads();

6 }

Listing 2: A hot loop in the b+tree example.

Listing 2 shows a costly loop in the b+tree code. The

raw PC sampling report shows high memory dependency

stalls on Line 2 but does not propose a suggestion to

eliminate the bottleneck. By analyzing the assembly code,

GPA concludes that the distance between the load instructions

and the instruction that consumes the loaded values is short.

Therefore, instructions in the path are not enough to hide

the latency. GPA suggests the users separate the subscripted

loads from their uses by reordering code. We read the

address of knodesD[currKnodeD[bid]].keys for the

next iteration before the synchronization on Line 5 and obtained

a 1.16× speedup.

The examples above illustrate that PC sampling measure-

ments alone are insufficient to guide optimizations. To provide

more useful performance feedback, we analyze instruction

dependencies to characterize the causes of instruction stalls.

GPA Framework
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Fig. 2: Overview of GPA.

Furthermore, we associate stalls with the program’s structure

to suggest code optimizations, such as loop unrolling, function

inlining, and code reordering.

III. OVERVIEW

Figure 2 shows the workflow of GPA. GPA uses a profiler

to collect PC samples and kernel launch statistics at runtime

and attribute them to the calling context where the kernel

is launched. The profiler dumps the profiles and records

CUDA binaries (CUBINs) for offline analysis. GPA’s static

analyzer analyzes CUBINs to recover static information which

is ingested into the dynamic analyzer with profiles to generate

comprehensive raw advice.

Static Analyzer: In its static analyzer, GPA analyzes

CUBINs to recover the following files:

• Control flow graphs. GPA employs NVIDIA’s

nvdisasm tool to decode instructions in CUBINs and

dump raw control flow graphs. We modify the raw control

flow graphs by splitting super blocks into basic blocks and

ingest the modified control flow graphs into Dyninst [20]

to analyze loop nests.

• Program structure. A program structure file contains

functions symbols, inlined call chains, loop nests, and

source line mappings. According to each function sym-

bol’s visibility field, we annotate global functions and

device functions. We use DWARF information to identify

inlined functions.

• Architectural features. Based on the architecture flag

encoded in each CUBIN, we fetch specific hardware

characteristics, such as instruction latencies, warp size,

and register limitations, for use in later analysis stages.
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Dynamic Analyzer: GPA’s dynamic analyzer is comprised

of three components, including an instruction blamer, perfor-

mance optimizers, and performance estimators.

We analyze each GPU kernel’s launch context separately. For

each kernel invocation, the instruction blamer uses backward

slicing [21], [22] to attribute stalls to the responsible instruc-

tions. Based on the stall counts and GPA’s static analysis results,

each performance optimizer attempts to match its optimization

strategy to program regions that have high stall samples. Guided

by performance models, performance estimators estimate each

optimizer’s speedup based on the matched samples. Finally,

GPA generates an advice report that contains suggestions from

its top optimizers sorted by their estimated speedups.

In this paper, we focus on the implementation of GPA’s dy-

namic analyzer, which tackles the following unique challenges:

(1) It extends the backward slicing algorithm for special fields

(e.g., barriers) of a GPU instruction to track dependencies

among GPU instructions. (2) It attributes stalls to their sources

accurately because it incorporates pruning rules to cut down

dependency sources. (3) Without code annotation, it derives

a general performance model to quantify the benefits of each

GPU optimizer.

Utilization of GPA: GPA is a command line tool that

automates profiling and analysis stages. Since GPA uses

sampling-based profiles, users do not need to change their

program source code. To provide advice at the source line

level, GPA only requires the use of compiler options that direct

the compiler to include line mapping information in GPU

binaries it generates. Users apply optimizations according to

the raw advice generated by GPA. Today, GPA produces raw

advice as ASCII text; however, its advice could be incorporated

into a graphical user interface tool to analyze inefficient code

regions and optimization suggestions.

IV. INSTRUCTION BLAMER

NVIDIA’s CUPTI library for performance measurement

associates stall reasons [14] with instruction samples. Among

the stall reasons, memory dependency, synchronization, and

execution dependency stalls are caused by the source in-

structions rather than the instructions that suffer from stalls.

Other stall reasons, such as memory throttling, are caused

by instruction samples with the stall. To further characterize

program bottlenecks with memory dependency, synchronization,

and execution dependency stalls, we developed an instruction

blamer that attributes stalls to the source instructions.

We first use backward slicing to analyze every instruction’s

def-use chains in the control flow graph. According to the

def-use chains and measurement data, we build an instruction

dependency graph where each node is an instruction, annotated

with its stalls, and each edge represents a def-use relation.

Since not all edges cause stalls, we prune edges according to

several heuristic rules. In the end, we apportion the stalls to

its incoming edges based on the number of issued instructions

and the length of each edge.

8/22/2020 51

LDG R0, [R2]
BRA 0x100

Write B0
Read B0

Fig. 3: An example of barrier register dependency.

Backward slicing: We target intra function backward

slicing [21] for GPU instructions because instructions in the

same function cause most stalls. We find a stalled instruction’s

immediate dependency sources because transitive dependencies

are unlikely to cause the stalls. According to Table I, several

fields of a GPU instruction impact instruction dependencies,

including operands, barriers, and predicate. Backward slicing

for operands of GPU instructions is like traditional backward

slicing for CPU instructions, but barriers and predicates need

special processing.

Virtual barrier registers: We define six available barrier

indices as six virtual barrier registers B0-B5. A write/read

barrier index association can be represented as a write operation

to one or more barrier registers. Likewise, we treat a wait

mask association as a read of barrier registers. In this way,

dependencies caused by barrier indices can be identified through

def-use chains of the virtual barrier registers. It is worth

noting that barriers can be set even if there is no dependency

between regular registers. Take Figure 3 as an example, the

LDG instruction loads a value to R0 and writes barrier B0, and

the BRA instruction does not consume R0 but still reads B0.

Observed memory dependency stalls on the BRA instruction

should be attributed to the LDG instruction.

Predicated instructions: Immediate dependency sources are

not only the first def instruction of each of its operands on the

search path. Consider Figure 4a as an example, suppose we

observe a stall at the IADD instruction, which does not have

a predicate; because the LDG instruction is executed only if

P0 is true, it is possible that the stall comes from the LDC

instruction earlier in the path, which is executed only if P0

is false. Therefore, backward slicing search should proceed

until the predicates of def instructions on the path cover all

conditions.

Let P be the union of def instructions’ predicates on the path.

P = ∪p, where p ∈ {pi}∪{!pi}∪{_}, and {pi}∪{!pi} = {_},

for 0 ≤ i ≤ 6. _ is a special predicate that covers both true

and false predicates. An instruction without a predicate has

the same semantic as _. We say P contains p′ iff p′ ∈ P or

_ ∈ P . Our backward slicing search proceeds until the union

of def instructions’ predicates on the search path (P ) contains

the predicate of the use instruction (p′).

Construct a dependency graph: We build an instruction

dependency graph from the def-use chains of collected instruc-

tion samples. For simplicity, in Figure 4b we only demonstrate

memory dependency. Each node represents an instruction, and

each edge represents a def-use relation associated with R0.

Prune cold edges: Not all the dependent edges cause

stalls. If an edge does not trigger stalls, we call it a “cold edge”

and use the following three rules to prune it.
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B3
…
IADD R8, R0, R7
…

B1
…
@P0  LDG R0, [R2]
…

B2
…
IMAD R0, R4, R5
…

B0
…
!@P0 LDC R0, [R4]
…

(a) Backward slicing.
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IADD R8, R0, R7

!@P0 LDC R0, [R4]@P0  LDG R0, [R2] IMAD R0, R4, R5

(b) Construct a dependency graph.
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IADD R8, R0, R7

!@P0 LDC R0, [R4]@P0  LDG R0, [R2]

(c) Prune cold edges.
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IADD R8, R0, R7

!@P0 LDC R0, [R4]@P0  LDG R0, [R2]
Issue: 1, Path: 5 Issue: 2, Path: 10

Stalls: 4

Stalls: 2 Stalls: 2

(d) Apportion stalls.

Fig. 4: Steps to attribute stalls of the IADD instruction.

1) Opcode based pruning. Memory dependency stalls are

attributed to memory instructions only. Synchronization

dependency stalls are attributed to synchronization in-

structions only.

2) Dominator based pruning. For every edge e from node

i to j in a dependency graph, we remove e if there is a

non-predicate instruction k that uses the same operands

that i defines and j uses, and k is in every path from i
to j in the control flow graph because we would have

observed stalls at k rather than j if i caused any stalls.

3) Instruction latency based pruning. For every edge e
from node i to j in a dependency graph, we remove e if

the number of instructions in every path from i to j in

the control flow graph is greater than the latency of i.

For fixed latency instructions, we can use microbenchmark-

ing [18] for their latencies; for variable latency instructions,

we use their upper bounds for pruning. For instance, we use

the TLB miss latency as the upper bound latency of global

memory instructions.

According to the opcode pruning rule, we prune the edge

from IMAD to IADD in Figure 4b to obtain the dependency

graph in Figure 4c because an IMAD instruction cannot cause

memory dependency stalls.

Attribute stalls: After pruning cold edges, there are still

some nodes that have multiple incoming edges. To measure the

stalls caused by each edge, we use the following two heuristics.

1) Apportion the stalls based on each incoming node’s

issued samples. The more the issued samples, the more

stalls are blamed on the instruction.

2) Apportion the stalls based on the number of instructions

in paths. The longer the path, the less stalls are blamed

on the def instruction. If an instruction i has multiple

paths to instruction j in a control flow graph, we use

the longest one.

Finally, we associate the stalls of each dependency source

(Si) by apportioning the stalls of the observed instruction (Sj)

using Equation 1, where Rissue
i is the ratio of each incoming

node calculated by heuristic (1), and Rpath
i denotes the ratio

of each dependency source i calculated by heuristic (2).

Si =
Rpath

i ×Rissue
i

∑

k∈incoming(j)

Rpath
k ×Rissue

k

× Sj (1)

Figure 4d shows the apportioned stalls using the above

heuristics. While the LDC instruction has twice the issued

samples of the LDG instruction, the number of path samples

from LDC to IADD is also twice that of LDG to IADD. Thus,

we assign each dependency source the same number of samples.

Without loss of generality, the above heuristics and equation

also apply for apportioning latency samples.
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(a) Memory dependency.
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Execution 
Dependency

Shared Memory 
Dependency WAR Dependency Arithmetic 

Dependency

LDS ST/STS/STG/STL Others

(b) Execution dependency.

Fig. 5: Classification of detailed dependency stall reasons.

After attributing stalls to their sources, we further classify the

stall reasons for execution and memory dependencies according
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to the opcode of each source instruction. As shown in Figure 5,

we categorize memory dependency as local memory, constant

memory, and global memory dependencies. Knowing where

local memory stalls occur is important for register pressure

analysis because it often indicates register spills. Likewise, we

classify execution dependency as shared memory, arithmetic,

and write-after-read (WAR) dependencies. WAR dependency

happens when a variable latency def instruction reads a value

from a register, and the use instruction writes the same register.

V. PERFORMANCE OPTIMIZERS AND ESTIMATORS

This section describes the implementation of performance

optimizers and estimators.

A. Performance Optimizers

Performance optimizers take program structure and the

analysis result from the instruction blamer. Each optimizer

encodes rules to calculate matching stalls. In this way, we lift

the job of associating stalls with optimizations from users to

the advisor.

TABLE II: A BRIEF DESCRIPTION OF GPU OPTIMIZERS IN GPA.

Code Optimizers

Stall Elimination

Register Reuse
Match memory dependency stalls

of local memory read/write instructions

Strength Reduction
Match execution dependency stalls of

long latency arithmetic instructions

Function Split Match instruction fetch stalls

Fast Math Match stalls in CUDA math functions

Warp Balance Match warp synchronization stalls

Memory Transaction Reduction Match global memory throttling stalls

Latency Hiding

Loop Unrolling
Match global memory and execution

dependency stalls in loops

Code Reordering
Match global memory and execution

dependency stalls

Function Inlining
Match stalls in device functions

and their call sites

Parallel Optimizers

Block Increase
Match if the number of blocks

is less than the number of SMs

Thread Increase
Match if occupancy is limited by

the number of threads per block

We classify the available performance optimizers in GPA in

Table II. At a high level, we have parallel and code optimizers.

Parallel optimizers check if we can increase the parallelism

level to improve performance. For instance, the Block Increase

optimizer investigates the potential of increasing the number

of blocks. Code optimizers check if we can adjust code to

improve the performance. Based on optimization methods, we

further categorize the code optimizers as stall elimination and

latency hiding optimizers. Stall elimination optimizers provide

suggestions to reduce stalls; latency hiding optimizers suggest

rearranging issue orders to overlap stall latency.

Each optimizer maintains a workflow to match instruction

samples. The Loop Unrolling optimizer, for example, iterates

through all the latency samples. It records a latency sample

if it has either a memory dependency stall or an execution

dependency stall, and the def and the use instructions are

within the same loop. The optimizer suggests using pragma

unroll annotation or manual unrolling for loops where the

compiler fails to unroll automatically.

B. Performance Estimators

With performance optimizers, we associate optimization

methods with stalls, whereas it is still unclear which methods

have a better effect in terms of the given measurement

data, program structure, and the underlying GPU architecture.

Performance estimators take the matched stalls as input and

estimate the speedups by modeling the GPU’s execution. The

optimizers with top estimated speedups output their suggestions

to the performance advice report. According to the categories

of optimizers, we classify estimators as code optimization

estimators and parallel optimization estimators.

1) Code Optimization Estimators: We first model the effect

of the stall elimination optimizers. Suppose the total of number

samples for a GPU kernel is T , and the matched samples

for an optimizer is M . Stall elimination optimizers assume

we at best eliminate all the stalls by modifying the code. We

use Equation 2 to estimate the speedup of stall elimination

optimizers Se.

Se =
T

T −M
(2)

Latency hiding optimizers suppose we can at best eliminate

latency samples by modifying code. Therefore, we can use

Equation 3 to estimate the speedup of latency hiding optimizers

Sh, where ML is the number of matched latency samples.

Sh =
T

T −ML
(3)

Latency Hiding Example

• Reorder instructions to hide latencies
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LDG R0, [R2]
STALL
STALL
IADD R5, R0, R5
IADD R6, R6, R6
IADD R7, R7, R7

Fig. 6: The mental model of latency hiding optimizers. Green code represents
active samples, and red stalls represent latency samples. Latency hiding
optimizers consider the effect of moving the code enclosed in dashed lines to
fill stall slots.

Equation 3 models the execution at the kernel level. In

practice, however, not all ML can be eliminated by rearranging

code. Figure 6 explains the mental model of latency hiding

optimization. We derive Equation 4 to refine the estimate of

Sh, where A denotes the total number of active samples.

Sh =
T

T −Min(A,ML)
(4)

We prove that the upper bound of Sh is two. We use L to

denote the total number of latency samples, and T = A+ L.
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Theorem V.1. The speedup upper bound of latency hiding

optimizations is 2×.

Proof. • If Min(A,ML) = A. T
T−A

= L+A
(L+A)−A

= 1+A
L

.

Because A ≤ ML ≤ L, T
T−Min(A,ML) ≤ 2.

• If Min(A,ML) = ML. T
T−ML = 1

1−ML

T

= 1

1− ML

A+L

.

Because L ≥ ML and A ≥ ML, ML

A+L
≤ 1

2 .

Then T
T−Min(A,ML)

≤ 2.

a) Scope Analysis: We observe that optimizations such

as loop unrolling only arrange code for a specific scope so

that only the active samples within the scope can be used to

reduce latency samples. Based on this limitation, we propose

Equation 5 to analyze optimization scopes representing loops

and functions. Sh
l indicates the speedup for a specific scope l,

and ML
l is the matched latency samples for a scope l.

Sh
l =

T

T −Min(
∑

l′∈nested(l)

Al′ ,ML
l )

(5)

Suppose we have a loop loop1 nested in another loop loop2,

the speedup of of loop2 is bounded by the active samples of

loop2 and loop1 according to Equation 5.

2) Parallel Optimization Estimator: Parallel optimizers

adjust the number of blocks and threads within each block to

change the parallelism level. To estimate the effect of adjusting

blocks and threads, we take into account each warp scheduler’s

change of active warps–CW (Equation 6) and change of issue

rate—CI (Equation 7) .

For instance, by increasing the number of blocks, we reduce

the active warps per scheduler, and CW is less than one. If the

number of threads of each block is reduced, the rate that a

warp scheduler is issuing is reduced, and CI is less than one.

CW =
Wnew

W
(6)

CI =
Inew
I

(7)

Assuming every warp scheduler’s issue rate is the same

across different SMs, we derive Equation 8 and Equation 9

to calculate I and Inew respectively, where RI is the ratio

of issued samples among all samples. A warp scheduler is

issuing if at least one warp on the scheduler is ready to issue

an instruction.

I = 1− (1−RI)
W (8)

Inew = 1− (1−RI)
Wnew (9)

Sp =
1

CW
× CI × f (10)

Based on CW and CI , we estimate the speedup of parallel

optimizations (Sp) using Equation 10, where f is a factor that

varies between optimizers. Some optimizers may assume there

is no pipeline, memory throttle, and no select stall if we reduce

the number of active warps per block to a certain number (e.g.,

less than the number of schedulers per SM).

VI. EVALUATION

We evaluated GPA on an x86_64 system with two Intel E5-

2695 processors and a single NVIDIA Volta V100 GPU. The

following system software are used: Linux 3.10.0, NVIDIA

CUDA Toolkit 11.0.194, NVIDIA Driver 450.51.06, and

GCC 7.3.0. We evaluated GPA on Rodinia benchmarks and

applications described below:

• Quicksilver [23] is a proxy application that solves a

dynamic Monte Carlo particle transport problem. Quick-

silver has a single large kernel that invokes many device

functions consisting of thousands of lines of code. We

studied Quicksilver with its default input.

• ExaTENSOR [24] is a library for large-scale numerical

tensor algebra. We studied its tensor transpose kernel

using a large six-dimensional tensor.

• PeleC [25] is an application for reacting flows using

adaptive-mesh compressible hydrodynamics. We studied

PeleC using its default input.

• Minimod [26] is a benchmark application for seismic

modeling. We analyzed its higher-order stencil codes using

grid sizes of 1003.

Each row in Table III quantifies the speedup we achieved

by applying the corresponding optimization suggested by GPA.

For each benchmark, we focused on the dominant GPU kernel

and implemented one of the top five optimization suggestions,

based on its estimated speedup and ease of implementation.

On average, we achieved a geometric mean of 1.22× speedup

with individual speedups ranging from 1.01× to 3.58×. GPA’s

estimated speedup is close to the speedup we achieved, with a

geometric mean of the gap between the speedup we achieved

and the estimated speedup of 4.1%. In the rest of this section,

we describe observations while analyzing and optimizing

benchmarks using GPA, including the optimization workflow,

false positivity, and single dependency coverage.

A. Optimization Workflow

Before using GPA, one can apply a source-to-source trans-

formation to separate variables that appear on a single line.

Then, one can start by interpreting the top optimizations in

the advice report by GPA. Not all optimizations are easy to

implement. For example, for a code reordering suggestion, if

the distance between the def and use instructions is long, it is

hard to improve it further. Based on our experience of studying

benchmarks, one can investigate the problem, modify the code,

and achieve speedup within half an hour. Typically, only a few

lines need to be changed to achieve non-trivial speedups.

B. False Positivity

GPA could overestimate optimization opportunities. From

Table III, we observe that loop unrolling and code reordering

optimizations have the highest estimate errors.
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TABLE III: ACHIEVED SPEEDUPS AVERAGED AMONG FIVE RUNS. WE IMPROVED EACH CODE ACCORDING TO THE SUGGESTION PROVIDED BY GPA.
ESTIMATE ERROR IS COMPUTED BY

|Estimated Speedup−Achieved Speedup|
Achieved Speedup

× 100%. THE DIFFICULTY COLUMN SHOWS THE COMPLEXITY OF APPLYING

THE CORREPONDING OPTIMIZATION TO THE CODE.

Application Kernel Optimization Difficulty Original Achieved Speedup Estimated Speedup Error

rodinia/backprop bpnn_layerforward_CUDA Warp Balance Easy 17.26±0.21us 1.15±0.03× 1.14× 1%

rodinia/backprop bpnn_layerforward_CUDA Strength Reduction Easy 15.06±0.13us 1.21±0.01× 1.24× 2%

rodinia/bfs Kernel Loop Unrolling Easy 567.14±2.04us 1.12±0.01× 1.59× 42%

rodinia/b+tree findRangeK Code Reorder Medium 51.59±0.39us 1.16±0.10× 1.28× 10%

rodinia/cfd cuda_compute_flux Code Reorder Medium 190.81±2.98ms 1.60±0.02× 1.68× 5%

rodinia/gaussian Fan2 Thread Increase Easy 105.76±0.00ms 3.58±0.15× 3.32× 7%

rodinia/heartwall kernel Loop Unrolling Easy 94.06±2.79ms 1.17±0.03× 1.18× 1%

rodinia/hotspot calculate_temp Strength Reduction Easy 11.92±0.08us 1.14±0.01× 1.09× 4%

rodinia/huffman vlc_encode_kernel_sm64huff Warp Balance Medium 123.40±0.28us 1.07±0.00× 1.17× 9%

rodinia/kmeans kmeansPoint Loop Unrolling Easy 784.41±4.81us 1.11±0.01× 1.20× 8%

rodinia/lavaMD kernel_gpu_cuda Loop Unrolling Easy 4.04±0.04ms 1.11±0.03× 1.12× 1%

rodinia/lud lud_diagonal Code Reorder Medium 218.33±0.11us 1.41±0.00× 1.48× 5%

rodinia/myocyte solver_2 Fast Math Easy 308.55±6.87ms 1.22±0.03× 1.13× 7%

rodinia/myocyte solver_2 Function Splitting Medium 258.09±0.27ms 1.02±0.01× 1.01× 1%

rodinia/nw needle_cuda_shared_1 Warp Balance Medium 839.11±0.80us 1.07±0.01× 1.09× 2%

rodinia/particlefilter likelihood_kernel Block Increase Easy 2.05±0.02ms 1.75±0.01× 1.92× 10%

rodinia/streamcluster kernel_compute_cost Block Increase Easy 20.73±0.28ms 1.52±0.03× 1.35× 11%

rodinia/sradv1 reduce Warp Balance Medium 1.94±0.28ms 1.02±0.01× 1.10× 8%

rodinia/pathfinder dynproc_kernel Code Reorder Easy 94.60±0.68us 1.04±0.01× 1.31× 26%

Quicksilver CycleTracking_Kernel Function Inlining Medium 50.48±0.70s 1.14±0.01× 1.18× 4%

Quicksilver CycleTracking_Kernel Register Reuse Hard 50.07±0.86s 1.02±0.01× 1.04× 2%

ExaTENSOR tensor_transpose Strength Reduction Easy 5.60±0.02ms 1.11±0.01× 1.06× 5%

ExaTENSOR tensor_transpose
Memory Transaction

Reduction
Easy 5.07±0.01ms 1.03±0.00× 1.05× 2%

PeleC react_state Block Increase Easy 121.60±1.05s 1.21±0.01× 1.23× 2%

Minimod target_pml_3d Fast Math Easy 88.88±1.14ms 1.03±0.01× 1.09× 6%

Minimod target_pml_3d Code Reorder Medium 85.99±0.06ms 1.04±0.01× 1.05× 1%

average 1.22× 1.26× 4.1%

The overestimation of the benefits of loop unrolling occurs

because the loop unrolling optimizer lacks information about

the number of iterations and compiler information. After closely

investigating the bfs benchmark, we found that the workload

is highly unbalanced such that most threads execute less than

four iterations of the loop. Thus, loop unrolling benefits only

a small number of threads.

The data dependency restriction causes the false positivity

of code reordering optimization. GPA suggests reordering a

global memory read in a loop of the pathfinder benchmark.

The estimated speedup is 26% higher than we achieved because

instructions after synchronizations depend on the results before

synchronizations. Therefore, the instructions we can use to

hide latency are limited in a fine-grained scope in which the

distance between the dependent instruction pairs is short no

matter how we arrange instructions.

C. Single Dependency Coverage

In the instruction dependency graph, we say a node is a

single dependency node if the node does not have any incoming

edge, or each incoming edge represents a different dependency.

We define single dependency coverage as the ratio of single

dependency nodes to the total number of nodes. Figure 7

quantifies the single dependency coverage before and after

pruning cold edges. After applying edge pruning heuristics,

most benchmarks have single dependency coverage greater

than 0.8 so that we can attribute the stalls to one edge without

apportioning.

Two exceptions are the bfs and the nw benchmarks. The

bfs benchmark is memory-intensive. Most of the instructions

are global memory read/stores, which have a 64-bit memory

address stored in two 32-bit registers. The nw benchmark

has many nodes with multiple incoming edges because of

its intricate control flow. The dominant loop in nw is fully

unrolled. Within the loop, there is a condition that decides if

values are calculated or not. If yes, it compares four candidates

and chooses the maximum one.

VII. CASE STUDIES

In this section, we study the optimizations for the four

larger benchmark codes in Table III, including ExaTENSOR,

Quicksilver, PeleC, and Minimod on the platform we mentioned

in Section VI. The GPU code of the applications was compiled

with -O3 -lineinfo. With the following case studies, we

show that one can achieve non-trivial speedup without in-depth

knowledge of the assembly code and the GPU architecture.

A. ExaTENSOR

We studied a tensor transpose kernel in ExaTENSOR. We

show a part of GPA’s report in Figure 8. GPA ranks GPU

kernels based on their running time. For each GPU kernel,

GPA groups optimization suggestions into Code Optimizers

and Parallel Optimizers sections. Their corresponding overall

estimated speedup determines the order of suggestions in each

section. For each suggestion, GPA presents hotspots, metrics,

and program context to inform how to transform the code.

Each hotspot consists of the def and use locations and their

instruction distance in the control flow graph. The importance

metric indicates the percentage of samples for this kernel

that this optimizer or hotspot matches. The speedup metric

indicates the estimated performance improvement after applying

code changes to the corresponding hotspots. The estimated
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Apply GPUStrengthReductionOptimizer optimization, importance 5.805%, estimate speedup 1.062x

Long latency non-memory instructions are used. Look for improvements that are mathematically
equivalent, but the compiler is not intelligent to do so.
1. Avoid integer division. Integer division requires using a special function unit to perform floating

point transformations. One can use multiplication by a reciprocal instead.
2. Avoid conversion. If the float constant is multiplied by a 32-bit float value, the compiler might

transform the 32-bit value to a 64-bit value first.

1. Hot BLAME GINS:LAT_IDEP_DEP code, importance 0.444%, speedup 1.004x, distance 1
From tensor_transpose at /home/kz21/Codes/GPA-Benchmark/ExaTENSOR/cuda2.cu:16
0x1620 at Line 34 in Loop at Line 30
To tensor_transpose at /home/kz21/Codes/GPA-Benchmark/ExaTENSOR/cuda2.cu:16
0x1630 at Line 34 in Loop at Line 30

Optimization 

Hints

Hotspot

def and use
locations 

Fig. 8: A performance report for ExaTENSOR.

speedup of an optimizer is achieved when all its hotspots are

optimized. In Figure 8, GPA reports that we can follow the

suggestions of the strength reduction optimizer. Because the

hotspot code performs an integer division, we can replace

it with a multiplication by its reciprocal. This optimization

renders a 1.11× speedup.

We analyzed the modified code again with GPA. This time

GPA suggests a memory transaction reduction optimization to

mitigate memory throttling stalls. In particular, GPA suggests

that we replace global memory reads by constant memory

reads if elements are shared between threads and not changed

during execution. According to the suggestion, we achieved a

1.03× speedup.

B. Quicksilver

We used GPA to analyze Quicksilver on a single GPU.

GPA reports the function inlining optimization may render the

highest speedup. Applying the always_inline keyword for

these functions fails to inline due to the size/register limitation

forced by the compiler. Therefore, we manually inlined two

small functions by integrating the whole function bodies into

their callers. By modifying the code in this way, we obtained

a 1.14× speedup.

Next, GPA’s register reuse optimizer indicates local memory

stalls in a loop and points out the potential cause of register

spilling. GPA suggests splitting the loop into two to save

registers. Without GPA, the raw PC sampling report by other

tools only show global memory stalls without identifying

register pressure. Applying the optimization yields a 1.01×
speedup.

C. PeleC

We studied the react_state kernel of PeleC. GPA

estimates the code reordering optimization may result in the

highest speedup. However, because the top five hotspots only

account for 4 % all of the matched stalls, there are many

hotspots distributed across lines so that it is difficult to adjust the

code manually. The second best optimizer suggests increasing

the number of blocks. Since the kernel only occupies 16 blocks,

GPA suggests reducing the number of threads per block while

increasing the number of blocks to improve the parallelism. By

increasing the number of blocks to 32, we achieved a 1.21×
speedup.

D. Minimod

We applied GPA to analyze the target_pml_3d kernel of

Minimod, which performs higher-order multi-statement stencil

computations. GPA first suggests using the fast math functions

to replace high precision match functions. We applied the

-use_fast_math compiler flag to achieve a 1.03× speedup.

Next, GPA suggests the code reordering optimizations for

the updated code. Adjusting the code to read subscripted values

from global memory well in advance of their use hides more of

the memory latency and yields an additional 1.04× speedup.

VIII. RELATED WORK

GPU profilers are widely available in various GPU architec-

tures. NVIDIA provides several tools [1]–[3] to measure GPU

performance metrics. Intel develops VTune [27] to monitor

executions on both CPUs and GPUs. AMD provides ROCPro-

filer [28] to read hardware counters and trace applications.
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There are also tools [4]–[6], [15], [29] that focus on large

HPC applications. Among the above tools, NVIDIA’s nsight-

compute provides the most information at the GPU kernel

level. It characterizes GPU kernels’ bottlenecks at the high

level but does not pinpoint bottlenecks and provide suggestions

for specific code regions. Egeria [30] analyzes performance

reports generated by profilers and adopts natural language

processing techniques to extract high level code transformation

rules from related documents. In contrast, GPA analyzes control

flow, program structure, architectural features, and interprets

measurement data to provide thorough suggestions and estimate

speedups.

GPU vendors have also developed instrumentation tools [31]–

[34] for fine-grained performance measurement and analysis.

These tools, however, introduce unavoidable overhead for GPU

kernels. GPA adopts PC sampling [14], which introduces

considerably less cost for kernel execution. There have been

efforts that use instrumentation methods to diagnose specific

types of inefficiencies. Yeh et al. [10] instrument GPU

code as it is generated by LLVM to identify redundant

instructions. CUDAAdvisor [8] also instruments code as it

is generated by LLVM to monitor GPU memory access and

decide if bypassing could be used. GVProf [9] instruments

GPU binaries to detect both temporal and spatial redundant

value patterns. These tools only identify a particular type of

inefficiencies and do not correlate the problem with hotness. In

comparison, GPA performs a comprehensive analysis of stall

reasons for instruction samples and derives various optimization

suggestions for hot code regions.

On the CPU side, there exist several tools that examine code

quality and provide optimization suggestions. PerfExpert [35]

collects performance metrics using sampling, analyzes measure-

ment data and system parameters, and estimates performance

upper-bounds. AutoScope [36] extends PerfExpert to suggest

optimization strategies based on the detected bottlenecks.

Unlike these two tools, CQA [37] builds a static model by

emulating processor pipelines to check symptoms (e.g., vector-

ization) on the loop level. VTune [38] uses structured guidance

to characterize the bottlenecks by interpreting performance

counters.

Profile-guided optimization takes measurement data as input

to guide compiler perform code transformation. Practical Path

Profiling (PPP) [39] collects edge profiles using instrumentation

to help compilers make decisions about function inlining

and loop unrolling. Instrumentation-based methods require

using representative inputs to dump meaningful profiles. To

avoid the overhead of instrumentation-based approaches, Aut-

oFDO [40] uses hardware counter based sampling to collect

profiles for production applications and use the profiles to

guide optimizations. While most profile-guided optimization

tools attribute measurement data to source lines to provide

feedback for compilers, BOLT [41] is a post link optimizer

that attributes samples on machine instructions and uses this

information to derive binary optimizations. Recently, there also

has been research that incorporates machine learning to guide

optimizations. Cavazos et al. [42] use profile data as input

features to a regression model that predicts the best compiler

flags. DeepFrame [43] incorporates deep learning methods

to learn the most likely paths during execution and offload

the regions to FPGAs. Though profiler-guided optimizations

can automatically adjust code based on rules or models, they

only cover a subset of all the available optimizations. Many

optimizations on GPUs need manual effort, such as warp

balance, memory coalescing, and adjustments to the thread

counts. Unlike other tools, GPA depends only on line-mapping

information and is not tied to any specific compiler.

IX. CONCLUSIONS AND FUTURE WORK

Tuning GPU kernels is difficult due to the complexity

of GPU architectures and programming models. To free

application developers from needing to interpret measurements

from multiple performance counters and analyze program

inefficiencies, we introduce GPA. This performance advisor

provides insightful optimization advice at the levels of lines,

loops, and kernels and estimates each optimization’s speedup.

GPA is organized in a modular fashion. Users can add custom

optimizers to match other inefficiency patterns (e.g., texture

fetch combination).

GPA suffers from both hardware and software limitations.

First, GPA apportions stalls to multiple dependency sources

with an approximation method based on the instruction

counts in the paths. If the hardware implemented “paired

sampling” [11], we could collect precisely both the stalled

instruction and the instruction that causes the stall. Second,

to obtain a more accurate speedup estimate, comprehensive

compiler information such as loop unroll count should be

considered. Last, because PC Sampling with NVIDIA’s CUPTI

serializes kernel executions, GPA’s profiler is unable to measure

the effect of concurrent kernel execution.

In the future, we plan to ingest compiler information into

GPA to perform a more accurate estimate. In addition, we can

use the insights derived from GPA to guide compilers to apply

code transformation for large-scale applications with hundreds

of tiny hotspots.
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