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ABSTRACT

Binary rewriting has been widely used in software security, soft-

ware correctness assessment, performance analysis, and debugging.

One approach for binary rewriting lifts the binary to IR and then

regenerates a new one, which achieves near-to-zero runtime over-

head, but relies on several limiting assumptions on binaries to

achieve complete binary analysis to perform IR lifting. Another ap-

proach patches individual instructions without utilizing any binary

analysis, which has great reliability as it does not make assumptions

about the binary, but incurs prohibitive runtime overhead.

In this paper, we introduce Incremental CFG Patching, a general

binary rewriting approach, to balance the runtime overhead and

binary rewriting generality. The basic idea is to utilize code patching

to catch control flow that we cannot accurately rewrite and use

binary analysis to rewrite as much control flow as possible. A key

feature of our approach is that we opportunistically utilize binary

analysis and binary meta-data to reduce runtime overhead; but for

cases where binary analysis failed or there is no sufficient meta-

data to support binary analysis, we can still correctly rewrite the

binary with small, additional runtime overhead, or achieve partial

instrumentation by skipping certain challenging functions. Our

approach supports multiple architectures (x86-64, ppc64le, and

aarch64), and multiple source programming languages (C/C++

including C++ exceptions, Fortran, Rust and Go), and works with

both position dependent and independent code. The evaluation

shows that our new approach on average incurs little runtime

overhead with SPEC CPU 2017 (<1%) and small overhead on Firefox

(<2%), and can successfully rewrite Docker, which is written in Go.

Finally, we present a case study that speeds up an instrumentation

based CPU/GPU synchronization analysis tool.

CCS CONCEPTS

· Software and its engineering→ Software reverse engineering;

Software performance; · Theory of computation → Program

analysis.

KEYWORDS

binary code patching, trampoline placement, binary analysis relia-

bility

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19–23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446765

ACM Reference Format:

Xiaozhu Meng and Weijie Liu. 2021. Incremental CFG Patching for Binary

Rewriting. In Proceedings of the 26th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS

’21), April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3445814.3446765

1 INTRODUCTION

Binary rewriting instruments compiled executables and libraries

without their source code. It has significant application to software

security [12, 25, 26, 32], software correctness [6, 16], and perfor-

mance analysis [28, 29, 31]. A rich literature of research is devoted

to improving the runtime overhead, reliability, and scalability of

binary rewriting [7, 14, 15, 27, 30].

Recent approaches for binary rewriting have taken two opposite

directions. On one hand, researchers utilize meta-data available

in binaries to perform complete binary analysis to lift binaries

to IR and then re-generate new ones; we call this approach as IR

lowering. Egalito [30] and RetroWrite [14] are two examples in this

category, leveraging relocation information in Position Independent

Executable (PIE) and achieving binary rewriting with near to zero

overhead in their empirical evaluation.

However, this IR lowering approach has twomajor disadvantages.

First, complete analysis is an undecidable problem in general and

is difficult to achieve in many practical use cases. Tools based on

IR lowering do not support source language specific features such

as C++ exceptions and .vtab function tables in Go binaries even

when these programs are compiled into PIE. In other words, PIE

does not necessarily make full binary analysis easy. In addition,

while PIE is the future trend, position dependent code cannot be

ignored. Current supercomputers and servers typically run Red Hat

7 systems, on which PIE is not the default. Red Hat 7’s maintenance

support is scheduled to end in 2024 [23]. Even on Linux distributions

whose default GCC compilers emit PIE by default, vendor specific

compilers may make a different decision: on Intel Dev Cloud, we

have Ubuntu 18.04, whose system GCC compiler will emit PIE; but

the Intel toolchain on that system will emit position dependent

code.

Second, IR lowering presents an łall-or-nothingž dilemma to

its users. As it must lift all binary functions to IR, if one of the

functions in binary contains rare, difficult binary code construct,

the whole binary rewriting may fail. IR lowering by design does

not allow leaving certain functions untouched while rewriting the

other ones. This łall-or-nothingž tradeoff is reasonable for security

applications such as software hardening [12, 25, 26]. It would not

generate a partially hardened binary that brings a false sense of

security. However, this tradeoff may not be ideal for other appli-

cation domains. For example, for performance analysis, the users
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may have known that certain functions are not the bottleneck, and

want to focus on a subset of the functions in the binary.

On the opposite to IR lowering is instruction patching, which does

not use any binary analysis, to achieve reliable binary rewriting.

E9Patch [15] devise multiple instruction sequences as trampolines

to transfer control flow from original code to instrumentation. This

approach has the advantage of being able to handle source language

specific features and allowing partial binary rewriting. However, it

incurs prohibitive runtime overhead as every instrumented instruc-

tion will require a branch from original code to instrumentation

and a branch back to original code: it incurs over 100% runtime

overhead when instrumenting basic blocks with empty instrumen-

tation. In addition, this approach does not guarantee high level

instrumentation semantics. For example, instruction patching can-

not ensure the semantics of function entry instrumentation, which

should be executed once and only once when a function is called. If

the function entry address is inside a loop, without constructing the

CFG and modifying the back edge of the loop, the function entry

instrumentation will be executed per loop iteration [7].

In this paper, we fill the gap between these two opposite bi-

nary rewriting approaches. We design a general binary rewrit-

ing approaching, incremental CFG patching, that balances runtime

overhead and generality. Our approach supports multiple architec-

tures (x86-64, ppc64le, and aarch64) and source programming

language (C/C++ including C++ exceptions, Fortran, Rust, and Go),

provides high level instrumentation semantics, supports partial

instrumentation and incurs incremental runtime overhead. Here,

incremental runtime overhead means that we design several bi-

nary rewriting modes where a mode with weaker binary analysis

assumptions incurs more overhead.

The basic idea of our approach is to use trampolines to catch

control flow that we cannot accurately rewrite, which aims for

generality and partial instrumentation, and use binary analysis to

identify the necessary places to install trampolines and rewrite as

much control flow as possible, which helps reduce runtime over-

head. However, several challenges must be addressed to put the use

of trampolines and binary analysis in harmony.

First, trap-based trampolines can cause prohibitive overhead.

A trampoline must have sufficient branching range to reach the

rewritten code and not overrun instructions that will be executed.

A last resort is to use a trap instruction to trigger a signal; the signal

handler can then perform the transfer. However, when such trap-

based trampolines are executed frequently, there can be prohibitive

overhead.

Second, binary analysis makes several assumptions about com-

piler code generation when identifying indirect control flow, in-

cluding jump tables and function pointers. While binary rewriting

builds on binary analysis can reduce runtime overhead when the

underlying analysis works, it may generate incorrect rewritten

binaries when the assumptions are violated.

Third, existing approaches for supporting stack unwinding in

rewritten binaries either brings high runtime overhead or suffers

from high engineering complexity. This capability is necessary for

rewriting language specific features such as C++ exceptions and Go

binaries where Go’s runtime natively unwinds the stack for memory

garbage collection and dynamic stack growing. One approach is to

emulate a call instructionwith a 3-instruction sequence [5, 8], which

puts the return address of the original call instruction to the stack.

In this way, stack unwinding can be performed normally. However,

this requires emulating every function call and we observe over

30% of runtime overhead by just emulating function calls.

The other approach is to update the meta data used for stack un-

winding, such as the .eh_frame sections, to reflect the structure of

the rewritten binary [21]. .eh_frame is encoded in DWARF, which

has subtle details with regard to its format encoding. Updating

.eh_frame requires covering every corner case and catching up

with new encoding attributes introduced in DWARF. This leads to

high engineering complexity and buggy software.

Incremental CFG patching addresses these challenges with the

following new techniques. First, we design a new static analysis,

Trampoline Placement Analysis, which places trampolines at care-

fully selected locations to reduce the use of trap based trampolines.

Trampoline placement analysis relies on the construction of CFG,

which is a critical task of binary analysis [13, 20, 24]. We do not rely

on accurate CFG construction and present a failure mode Analysis

of how failures in CFG construction would impact binary rewriting.

Second, we provide three binary rewriting modes that rewrite (1)

direct control flow, (2) intra-procedural indirect control flow, and (3)

inter-procedural indirect control flow. We characterize the assump-

tions made by binary analysis used to rewrite these types of control

flow and assess their impacts on binary rewriting when the assump-

tions are violated. This assessment leads to several improvements

for rewriting indirect control flow, and gives users an understand-

ing of choices for binary rewriting, avoiding the łall-or-nothingž

scenario.

Third, we design Runtime Return Address (RA) Translation to

translate the return address from the rewritten code to the cor-

responding original call site before the return address is used for

stack unwinding. This one level of indirection enables the language

runtime for stack unwinding to perform stack unwinding using

the original .eh_frame section, as if the binary was not rewritten.

Our approach enjoys low overhead as we no longer need to em-

ulate function calls and simplicity as we do not need to update

complicated DWARF.

Fourth, we design new trampoline instruction sequences that

have varied branching ranges and lengths. All our new trampoline

sequences are position independent, which ensures that our tech-

niques work with shared libraries and PIEs. Existing work focuses

designing trampoline instruction sequences for x86-64 [11, 15].

We learn from existing work and also design new trampolines for

ppc64leand aarch64.

We implement incremental CFG patching as an extension to the

Dyninst binary analysis and instrumentation tool suite [22] and

evaluated our approaches with SPEC 2017 CPU, libxul.so from

Firefox, Docker. We can successfully rewrite over 99.41% of the

total functions in binaries from SPEC CPU 2017, 99.93% functions

in libxul.so and all functions in Docker. The average runtime

overhead incurred by our approach is under 1% for SPEC CPU 2017

and 2% for Firefox.

We present a case study with Diogense [28, 29], which is a tool

for automatically identifying and fixing unnecessary CPU/GPU syn-

chronization and duplicated CPU/GPUmemory transfers. Diogenes

has a step that uses Dyninst to instrument Nvidia runtime driver

libcuda.so to identify the hidden synchronization function in the
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driver. We speed up the identification from 30 minutes to 30 seconds

by replacing mainstream Dyninst with our implementation.

In summary, this work makes the following contributions:

• Incremental CFG patching, a general binary rewriting ap-

proach that balances runtime overhead and generality;

• Trampoline placement analysis that reduces trap-based tram-

polines and tolerates control flow over-approximation;

• An assessment of imprecision in binary analysis for rewriting

indirect control flow and improvement to binary analysis

for binary rewriting

• Runtime RA translation, a mechanism to rewrite stack un-

winding without incurring additional overhead, which is

necessary for programs that use C++ exceptions and pro-

grams written in Go;

• An implementation of our new techniques in Dyninst and a

case study illustrating how our new techniques speed up an

existing software tool.

2 RELATED WORK

In Table 1, we compare existing binary rewriting approaches with

our work based on three aspects: (1) what types of control flow

are rewritten, (2) how to handle unmodified control flow, and (3)

how to support stack unwinding in rewritten binaries. We discuss

how these aspects impact binary rewriting runtime overhead and

generality. We include BOLT [21] in our discussion even though

BOLT is a binary optimizer rather than a general binary rewriting

tool.

2.1 Rewriting Control Flow

Intuitive, when more types of control flow are rewritten, the run-

time overhead decreases. But to rewrite more control flow, more

binary analysis is needed, which may lead to less reliable binary

rewriting. We discuss two issues with regard to rewriting control

flow. First, what types of control flow are rewritten? We identify

three types: rewriting no control flow, only direct control flow,

and also indirect control flow. Second, as tools commonly utilize

relocation entries for binary analysis, we discuss what types of

relocation entries are used, which impacts the generality of binary

rewriting. We identify three types: no use of relocation, use of run

time relocation, and use of link time relocation,

E9Patch [15] does not rewrite any control flow. It does not

use any relocation entries either. This strategy allows E9Patch

to achieve great binary rewriting generality, but incurring high

runtime overhead.

Multiverse [5] and Sensitive Resistant Binary Instrumentation

(SRBI) [7] modify only direct control flow while maintaining orig-

inal indirect control flow. It is straightforward to modify direct

control flow as direct control flow targets are encoded in the branch

or call instructions. Neither Multiverse nor SRBI uses relocation

entries.

Egalito [30], RetroWrite [14], and our work aim to also rewrite

indirect control flow. The two main tasks are rewriting jump tables,

which implements switch statements, and rewriting function point-

ers, which are used for indirect calls. The analysis of jump tables

and function pointers often involves multiple instructions, under-

standing instruction semantic, and memory tracking (i.e. tracking

register spills through stack). Egalito and RetroWrite argue that

since the default compilers on recent Linux distributions generate

PIEs by default, it is possible to achieve complete rewriting of indi-

rect control flow utilizing the necessary run time relocation entries

in PIE. Egalito and RetroWrite require run time relocation entries to

be available, limiting their use to non-PIE. Our work, on the other

hand, aims to rewrite indirect control flow as much as we can, and

characterize when it is safe and when it is not safe to do so. We use

relocation entries when they are available but do not require them

to be present.

BOLT [21] as a binary optimizer requires link time relocations

to be able to re-order functions. Link time relocation entries are re-

moved by default. The user must recompile the program by passing

flag -Wl,-q to instruct the linker to retain link time relocation en-

tries. For the domain of binary optimizer, it is reasonable to assume

that the user has source code and can recompile the code as re-

quired. Unfortunately, this is typically not a reasonable assumption

for other use cases of binary rewriting, including security analysis,

software forensics, and reverse engineering.

In summary, our work balances the goal of low overhead by

rewriting all types of control flow and achieving generality by not

requiring relocation entries.

2.2 Handling of Unmodified Control Flow

Unless a binary rewriting approach can rewrite all control flow,

it must ensure correct execution of unmodified control flow. We

identify three different categories: no handling of unknown control

flow (shown as łNAž in the table), code patching, and dynamic

translation (DT).

E9Patch and SRBI use code patching, which install trampolines

(typically a branch instruction) to transfer control flow to rewrit-

ten code. E9Patch focuses on reducing trap based trampolines on

x86-64. A 5-byte branch instruction on x86-64has branching range

± 2GB relative to the current PC, which is typically sufficient, How-

ever, there may not be five bytes available. E9Patch’s utilizes re-

dundant instruction prefixes, the 2-byte short branch instruction,

and operationally equivalent instructions, to reduce the use of trap

based trampolines. E9Patch’s technique highly depends on the ISA

features of x86-64, and cannot be extended to ppc64leor aarch64.

On ppc64leand aarch64, there will always be space for a branch

instruction. However, a branch instruction has only ± 32MB and ±

128MB branching range, respectively, which may not be sufficient

when the binaries have large code or data sections. SRBI installed

trampolines at every basic block and suffered from trap-based tram-

polines in several cases based on our empirical evaluation.

Our work also uses code patching for handling unmodified in-

direct control flow. We design a trampoline placement analysis to

determine where trampolines are needed and identify more code

bytes that can be safely reused for installing trampolines. We also

devise new trampoline sequences to address the issue of branching

limit on ppc64leand aarch64.

Multiverse uses the idea of dynamic translation to handle un-

modified control flow for binary rewriting. Dynamic translation

is a technique used by dynamic binary instrumentation [10, 18],

which modifies an indirect control flow instruction to a function
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Table 1: Comparison of binary rewriting approaches. We have two empty entries for BOLT as BOLT’s paper [21] does not

describe corresponding aspects.

Approach
Rewriting control flow

Unmodified control flow Stack unwinding
Types to rewrite Use of relocation

BOLT [21] Link time Update DWARF

Egalito [30] Indirect Run time NA NA

E9Patch [15] No None Patching NA

Multiverse [5] Direct None Dynamic translation Call emulation

RetroWrite [14] Indirect Run time NA NA

SRBI [7] Direct None Patching Call emulation

Our work Indirect None Patching Dynamic translation

call to a translation function implemented in a runtime monitor-

ing library. The translation function at runtime knows the exact

control flow target, lookup whether it is instrumented, and decide

whether the control flow should be directed to the original target or

instrumentation. Multiverse uses this approach to rewrite indirect

control flow and inject the translation function into the rewritten

binary. For an indirect control flow transfer, which can be done

with one instruction when uninstrumented, dynamic translation

requires one dynamic translation function call. This significantly

increases runtime overhead.

2.3 Supporting Stack Unwinding

An early approach to support stack unwinding in binary rewrit-

ing is call emulation [5, 8]. We emit additional instructions in the

rewritten code to push the original return address to the stack on

x86-64or store the original return address to the link register on

ppc64leand aarch64; we then emit a branch instruction to the

actual call target. With call emulation, stack unwinding runtime

always sees original return addresses, enabling stack unwinding

for rewritten binaries. However, the control flow will return the

original call site after the callee returns; it is necessary to handle

this type of unmodified control flow with either code patching (in-

stalling a trampoline at original call site) or dynamic translation

(rewriting every return instruction with a translation call). Multi-

verse and SRBI use this approach to support stack unwinding. The

biggest downside is that it incurs high runtime overhead due to

emulation.

A recent approach is based on the observation that language

runtime consumes DWARF records in .eh_frame to look up un-

wind recipes and then perform unwinding. Therefore, if we can

update the data in .eh_frame to reflect the new structure of the

rewritten binary, stack unwinding can be supported transparently.

BOLT [21] implements this approach. The advantage is that it in-

curs no runtime overhead. However, this approach brings high

software engineering complexity due to subtle encoding formats in

DWARF. For example, even though BOLT is widely used in industry

settings to optimize performance for large facebook web-services

and is a well maintained open source project, BOLT developers

still need to deal with bugs introduced by new DWARF encoding

for .eh_frame [9]. We note that DWARF information generated by

even mainstream compilers can be buggy [17], showing that it is

not a simple task to generate or rewrite DWARF.

Our work uses the idea of dynamic translation to achieve low

overhead support for stack unwinding. In our runtime return ad-

dress translation, we invoke one return address translation per call

frame unwinding. Call frame unwinding is an expensive operation

as it looks up DWARF unwinding information and updates register

states. Therefore, our return address translation does not bring no-

ticeable runtime overhead. In addition, compared to the approach

of updating DWARF, our approach enjoys the simplicity of not

dealing with DWARF.

Our approach can also be easily adapted to emerging stack un-

winding techniques that are not based on DWARF. frdwarf [4]

has implemented a new stack unwinding technique that łcompilesž

.eh_frame to machine instructions, so that the language runtime

does not have to lookup DWARF unwind recipes each time, but

just executable the corresponding machine instructions to unwind

the stack. Their evaluation shows that this new stack unwinding

technique is 10 times faster than DWARF based unwinding. Up-

dating DWARF is not applicable to such new non-DWARF based

unwinding techniques.

3 INCREMENTAL CFG PATCHING
OVERVIEW

Figure 1 overviews our approach. Given an input binary shown on

the left side, our approach emits a new binary shown on the right

side. The rewritten binary has several modified sections and newly

added sections. We discuss how these sections are arranged. Simi-

lar section arrangement has been used by other binary rewriting

approaches [5, 7, 30].

.text contains trampolines that transfer the execution to section

.instr, which contains the relocated code and instrumentation.

The analysis of trampoline placement is described in Section 4. It

determines where trampolines are necessary.

Unmodified control flow in .instr transfers the execution back

to .text, and a trampoline is often immediately executed to go back

to instrumentation. This ping-pong execution between .instr and

.text is a major source of runtime overhead for patching based bi-

nary rewriting as it pollutes the instruction cache. We design three

modes of binary rewriting: dir, which only modifies direct control

flow, jt, which modifies direct control flow and jump tables, and

func-ptr, which modifies function pointers in addition to control

flowmodified by jt. In Section 5, we identify the assumptions made

by binary analysis for rewriting jump tables and function pointers.
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ELF sections:

.dyn_sym

.dyn_str

.rela_dyn

.bss

.text

.rodata

ELF sections:

.old_dyn_sym

.old_dyn_str

.old_rela_dyn

.bss

.text

.rodata

.instr

.trap_map

.ra_map

.dyn_sym

.dyn_str

.rela_dyn

…

long branch

… 

short branch

…

long branch 

func1:

…

call *rax

func2:

Original 

binary

Rewritten 

binary

Runtime 

library

.eh_frame

Figure 1: An overview of our approach. Yellow shaded sec-

tions contain new code. Green shaded sections contain new

data. Solid edges represent control flow caused by trampo-

lines. Dashed edges represent unmodified control flowgoing

from instrumentation back to the original code.

This assessment leads to a jump table rewriting approach that tol-

erates control flow over-approximation and safely skips detected

under-approximated control flow, and a function pointer rewrit-

ing approach that requires precise analysis. The requirement of

precise function pointers analysis highlights why complete binary

analysis is difficult, and it is valuable to have incremental binary

rewriting. Rewriting jump tables and function pointers typically

modify .rodata (read-only data) section and relocation entries in

.rela_dyn.

Several sections including .dyn_sym, .dyn_str, and .rela_dyn

are needed for dynamic linking. These sections are copied and

moved to different memory regions so that there will be enough

space to hold new dynamic symbols and relocation entries. This is

essential to support making function calls to external instrumen-

tation libraries. The old sections are renamed so that the loader

will not confuse the old sections with the new ones. We observe

that these old sections are no longer used and thus can be safely

used as scratch space. Such scratch space in addition to the padding

bytes in .text is valuable real estate for installing multi-branch

trampolines, where we can use a short branch in .text to the first

branch to scratch space where a long branch is installed. The new

trampoline design is described in Section 7.

.ra_map (when needed) is a new section added by our approach.

We use this section to store a mapping from the return address in

.instr to the corresponding return address in .text, as described

in Section 6. This mapping is used at runtime to translate return

address on stack to the corresponding original call site, which en-

ables efficient stack unwinding for C++ exceptions and Go binaries.

.eh_frame is not modified by us.

The last piece is a runtime library, which contains routines to

handle trap signals caused by trap trampolines and translate return

address on stack. This runtime library can be injected into the

rewritten binary at runtime using LD_PRELOAD.

4 TRAMPOLINE PLACEMENT ANALYSIS

We present an analysis of trampoline placement that determines

where to install a trampoline to ensure safety and reduce the use

of trap-based ones. We start with definitions necessary to formu-

late our analysis, and describe our analysis assuming an accurate

CFG. We then discuss the impact of CFG construction failures and

imprecision on our analysis.

4.1 Definitions

We use a standard definition for a CFG G =< B,E, F >, where

• B is a set of address ranges [s, e) that represents basic blocks.

Each of the address range contains at most one control flow

instruction at its end, and has incoming control flow only at

s;

• E is a set of control flow edges between basic blocks;

• F ⊆ B is a set of function entry blocks.

Control Flow Landing (CFL) Block: a basic block b ∈ B is

called a CFL block if one of its incoming control flow edge is un-

modified.

During the execution of the rewritten binary, a CFL block is a

block where control flow may be transferred from the rewritten

code (.instr section) back to the original code (.text section).

Therefore, we need to install a trampoline to redirect the execution

back to the rewritten code before missing any instrumentation.

We use SRBI as an example, which modifies only direct control

flow and uses call emulation. For SRBI, CFL blocks include the func-

tion entry blocks and indirect jump target blocks, as indirect calls

and jumps are not modified. When the binary uses C++ exceptions,

CFL blocks also includes call fall-through blocks as the call emula-

tion will push the original return address to the stack, and catch

blocks that may catch exceptions.

For a function f , we denote Bcf l as the set of CFL blocks in a

function and Binst as the set of blocks that are instrumented. We

then define:

Instrumentation Integrity: For ∀b1 ∈ Bcf l ∧b2 ∈ Binst , there

should be at least one trampoline on every control flow path from

b1 to b2.

This property specifies that before executing any instrumented

basic blocks, a trampoline should be executed to transfer control

flow to the rewritten area. Otherwise, instrumentation may be

skipped.

We denote Bt as the set of blocks with trampolines installed.

Scratch block: For a block b ∈ f , denote P as a set of blocks

that are on any one path between Bt and b, if P ∩ Bcf l = ∅, b is a

scratch block.

A scratch block will not be executed because all of its reach-

able control flow paths are intercepted by trampolines. Therefore,

scratch blocks can safely be used as scratch space for installing

trampolines in Bt .

Trampoline Superblock: For a block b = [s, e) ∈ Bt in which

we need to install a trampoline, we can extend its address range

with scratch blocks to [s, se) where se >= e and to a trampoline

superblock. Trampoline superblocks create more space to install

trampolines and can help to reduce the use of trap-based trampo-

lines.
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4.2 Trampoline Placement

Existing approaches install trampolines at every basic block (SRBI),

or at every instrumented instruction (instruction patching). These

are two sufficient but inflexible strategies to satisfy instrumentation

integrity.

We observe that installing trampolines only in CFL blocks also

satisfies instrumentation integrity. This strategy has the following

advantage over existing approaches: we can incrementally reduce

the number of CFL blocks by rewriting more types of control flow,

while the instrumented instructions are specified by the user, for

which we do not have control. Specifically, we can remove three

types of CFL blocks: (1) jump table target blocks if we rewrite jump

tables so that intra-procedural indirect jumps would stay in the

rewritten code, (2) function entry blocks if we rewrite function

pointers, (3) call fall-through blocks with runtime RA translation.

The fewer the CFL blocks, the less likely we will need trap-

based trampolines and less runtime control flow bouncing between

original code and rewritten code. This analysis bridges the gap

between code patching and IR lowering. First, with sufficient binary

analysis, code patching can also ensure that program execution

stays in the rewritten code, just like rewritten binaries emit by IR

lowering. Second, for cases where binary analysis is not sufficient,

code patching can utilize trampolines to redirect unmodified control

flow, while IR lowering cannot rewrite those binaries.

With the above analysis in place, the algorithm for installing

trampolines becomes straightforward. We take as input a function

f = {b1 = [s1, e1),b2 = [s2, e2), · · · ,bn = [sn , en )} where s1 < s2 <

· · · < sn , and a set of CFL blocks Bcf l , the algorithm generates a

set of trampoline superblocks where we will install trampolines.

The key observation is that every non-CFL block is a scratch block.

This is because if the control flow enters the original code, this

code block by definition is a CFL block, and thus a trampoline is

installed in this block to transfer the execution back to relocated

code. Therefore, all non-CFL blocks will never be executed and can

be safely used as scratch blocks, and we can extend CFL blocks

with these scratch blocks to form trampoline superblocks.

We note that it is possible to design more sophisticated trampo-

line placement analysis by installing trampolines at blocks that are

post-dominated by blocks in Bcf l or at blocks that dominate blocks

in Binst . This can potentially reduce the number of trampolines

even further. Our evaluation in Section 8 shows that our trampoline

placement strategies work well in practice.

4.3 Impacts of CFG Construction Failures

To this point, we have assumed that we have an accurate CFG.

The construction of CFG from binary code is a critical research area.

The focus has been improving the analysis precision of several

challenging code constructs, including tail calls, indirect jumps,

non-returning functions. While significant research effort has been

spent on this topic, to the best of our knowledge, no techniques

can guarantee precise CFG construction [3].

In Figure 2, we illustrate three types of failures when construct-

ing CFG and how these different types of failures in CFG construc-

tion would impact the quality of binary rewriting. The three types

of failures are analysis reporting failure, which means that the

Analysis 

failure

CFG construction of a function

Over-

approximation

Under-

approximation

Lower coveage Higher overhead Rewriting failure

Figure 2: A failure mode analysis of how binary analysis af-

fects binary rewriting. Solid edges represent three possible

analysis failures. A dashed edge represent how a particular

type of failure of binary analysis would affect binary rewrit-

ing.

binary analysis itself detects errors that it cannot handle, over-

approximation, which means the CFG contains infeasible control

flow, and under-approximation, which means the CFG misses real

control flow.

First, an analysis may fail gracefully when it analyzes a function

and report the failure to its user through error handling mecha-

nisms such as error return code or exceptions. Careful software

engineering should achieve this goal. For binary rewriting, if CFG

construction of a function failed, our approach will simply not

instrument this function, which leads to lower instrumentation cov-

erage. We note that the instrumentation of other functions are not

affected. To establish this property, suppose the analysis of function

f failed and we consider inter-procedure control flow between f

and other functions. When f calls an instrumented function, as

we always install trampolines at the entry of instrumented func-

tions, there is guaranteed to be a trampoline at the callee’s entry,

ensuring instrumentation integrity. On the other hand, calls from

instrumented functions to f are adjusted to ensure they go to f ’s

entry.

Second, an analysis may report success but over-approximate

the CFG. For an over-approximated control flow edge, whose target

is address x and falls into block b = [s, e), where s < x < e ,

this over-approximated edge would lead us to create two blocks

b1 = [s,x) and b2 = [x , e). In the case where we determine b2 as

a CFL block, we would install a trampoline in block b2, for which

we do not actually need. This unnecessary trampoline may reduce

scratch space for other trampolines, which may lead to trap-based

trampolines. However, it will not lead to wrong instrumentation.

Third, an analysis may report success but under-approximate

the CFG. For an under-approximated control flow edge, whose

target is address x and falls into a block b = [s, e), where s <

x < e , we should have two blocks b1 = [s,x) and b2 = [x , e),

but instead we only see one block b = [s, e). The missed edge is

certainly not modified because it is impossible to rewrite control

flow without identifying it in the first place. In this case, we will

miss a trampoline that should have been installed, which may lead

to wrong instrumentation.
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In summary, for binary rewriting, we should adapt existing bi-

nary analysis to avoid under-approximation failures, as they may

lead to catastrophic results.

5 MODIFYING INDIRECT CONTROL FLOW

We have established the safety and performance properties of our

approaches. A key factor for reducing runtime overhead is to re-

solve and rewrite indirect control flow. The computation of indirect

control flow can theoretically involve arbitrary instructions and

memory locations. Fortunately, mainstream compilers do not do

so. Binary analysis for analyzing indirect control flow is based on

characterization of compiler code generation patterns. We assess

assumptions made by existing binary analysis techniques, discuss

the impacts of violating these assumptions on binary rewriting, and

design improvements accordingly.

5.1 Intra-procedural Indirect Control Flow

Jump tables represent a typical intra-procedural indirect control

flow that implements switch statements. To resolve and rewrite

jump tables, we need to identify the following elements: (1) the

starting address of a jump table, (2) the number of entries of a table,

and (3) the expression of the indirect jump target given a table

entry content. These elements are typically identified by performing

backward slicing from the indirect jump instruction, computing

a symbolic expression of the jump target, and inferring the table

size [13, 19, 20, 24].

We design jump table cloning where we copy the jump table

entries and overwrite several instructions that are used in the jump

table computation to reference the new table. The new table ensures

the relocated indirect jumps will stay in the relocated area. With

this technique, jump table target blocks are no longer CFL blocks.

We retain some information about the resolved jump tables,

including table entry size (in bytes), the number of entries, and the

symbolic expression that computes the jump target tar (x), where

tar represents the function that computes the jump target and x is

the content read from a table entry.

Since we know the target addresses of the relocated jump targets,

denoted as y, we solve tar (x) = y for x0 and write the x0 to the new

jump table. After constructing the new jump table, we overwrite

the instructions that compute the jump table base to reference the

new jump table. On x86-64and ppc64le, jump table entry has sizes

in 4 or 8 bytes, which are sufficient to hold the newly computed

table values. On aarch64, we find that the compiler often emits

jump table entries in 1 or 2 bytes; in this case, we need to modify

the jump table read instruction to perform a 4-byte read.

Now we discuss two assumptions made by existing work when

resolving jump tables and the impact on binary rewriting when

jump table analysis fails.

Assumption 1: Jump table data are not embedded in code.

Egalito [30] made this assumption, which in general holds on

x86-64and aarch64. However, almost all jump tables are embed-

ded within the code section for ppc64lebinaries, typically placed

immediately after the indirect jump that uses the jump table. We

do not make this assumption as we perform control flow traversal

to identify code and try our best to identify memory accesses to

addresses in code sections.

Assumption 2: Jump tables do not overlap with each other and

do not overlap with other data.

This is an effective strategy to handle over-approximation of

jump tables. Egalito trims jump tables so that they do not overlap.

We find that on aarch64, jump tables may be separated by other

constant data such as strings or numerical values. Our work further

trims over-approximation by identifying non-jump table memory

accesses and ensure jump tables will not run into other jump tables

or known non-jump table data. Note that we do not guarantee that

we find all possible non-jump table memory accesses. The more

we can find, the better we can reduce over-approximation, but the

correctness does not depend on finding all non-jump table memory

accesses.

These two assumptions impact the identification of the elements

needed to rewrite jump tables. While we expect the analysis of

jump tables will evolve and become more robust in the future, we

argue that a binary rewriting approach should not rely on precise

analysis of jump tables. Following the failure analysis we have

presented in Section 4.3, we now discuss how different types of

jump table analysis failures will affect binary rewriting, and how

we adjust jump table analysis for better binary rewriting. In our

experience, these failures are caused by complicated path conditions

for tracking values, values spilled to and reloaded frommemory, and

unhandled instructions that are used in jump table computation.

Failure 1: Cannot find where a jump table starts.

This case corresponds to the łAnalysis failurež case shown in

Figure 2, which leads to lower instrumentation coverage. We mark

such functions uninstrumentable as SRBI [8]. We will show in

Section 8 that this strategy may lead to instrumentation coverage

lower than 90% of the total functions.

To improve instrumentation coverage, we observed that many

failures from jump table analysis are actually caused by indirect

tail calls. For indirect tail calls, these jumps do not lead to under-

approximated intra-procedural control flow; so, it is safe to instru-

ment the functions that contain indirect tail calls even if we cannot

resolve their control flow targets.

A common heuristic to identify indirect tail call is to findwhether

there are stack frame tear down instructions before the indirect

jump [20]. In practice, we find that this heuristic missed many

indirect calls for functions that do not need a stack frame. We

identify potential indirect tail calls by analyzing the function layout.

If an indirect jump is intra-procedural, failing to resolve it would

lead to undiscovered code. Essentially, the function would contain

gaps in its address range. We decode instructions in the gaps and

see if these are real code or just nop padding. If a function contains

no gaps or the gaps contain only nop padding, we treat unresolved

indirect jumps as tail calls.

We comment that our indirect tail call identification is still based

heuristics. Therefore, it is possible that an indirect jump may be

wrongly identified as an indirect tail call, when it is actually an

intra-procedural indirect jump. Such mistakes would lead to under-

approximated CFG, and potentially failures in binary rewriting. As

we will shown in Section 8, our new heuristics can empirically im-

prove instrumentation coverage, yet without introducing failures.

Failure 2: Under-approximate the total number of entries in a

jump table.
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Under-approximated CFGwill lead to failures in binary rewriting.

We avoid under-approximation based on Assumption 2: we extend

the end of the jump table to reach the nearest known data access

address or the next jump table start. Note that this may lead to over-

approximation, but as we will discuss below, over-approximation

does not impact instrumentation safety.

Failure 3: Over-approximate the total number of entries in a

jump table.

This can happen when we missed certain non-jump table mem-

ory access or failed to find the starts of other jump tables. We clone

the jump table to a different location and leave the original jump

table unchanged, and the over-approximated entries will not be

accessed at runtime. If we overwrite the original jump table in place,

the over-approximated entries will cause overwriting to data not

in the jump table, and cause the rewritten binary to fail. Therefore,

copying the table to a new place is critical to tolerate control flow

over-approximation.

5.2 Inter-procedural Indirect Control Flow

Modifying indirect calls and indirect tail calls is a challenging task.

The definition of a function pointer can be far away or even in

a different function from the use of the function pointer, and the

function pointer may flow through multiple memory locations.

Therefore, it is difficult to determine whether a value that matches

a function entry address is a function pointer or happens to be a

numerical value.

To rewrite inter-procedural indirect control flow, we do not need

to know where an indirect call may go. We only need to modify

the definition of a function pointer. The use of a modified function

pointer points to the relocated function accordingly.

We establish a safety requirement for rewriting function pointers:

it is safe to modify function pointers only when we can precisely

identify all function pointers. If we over-approximate a data value

as a function pointer and modifies it, this modified value will not

be used for control flow but used in other computations, which

will lead to changed program behaviors. If we under-approximate

function pointers, then function pointer comparisons may end up

with a different result. For example, suppose we have a function

f and x is a function pointer that is initialized to point to f . For a

condition x == &f, if we only modify function pointer at one side,

the result of the condition will change.

Egalito characterizes that in PIE, an absolute function pointer

needs a relocation entry and a relative function pointer needs a PC-

relative instruction, and show that it is possible to achieve precise

function pointer identifications for PIEs. We point out that this

observation does not necessarily hold.

Listing 1 is a code example from docker (Docker version 19.03.11),

which is a Go binary and PIE. At address 0x1666e98, we load a

function pointer, whose content will be modified by the loader as

specified by the relocation entry, into %rcx. Then %rcx is incre-

mented by one and stored into a memory location, which then will

be used for an indirect call. If we only modify the relocation entry

without realizing the function pointer will be incremented by one,

then when we instrument the entry of function runtime.goexit,

the increment by one will cause the indirect call to call into the

middle of instrumentation.

000000000168f5e0 <runtime.goexit>:

168f5e0: nop

168f5e1: callq 1669c20 <runtime.goexit1>

0000000001666e40 <runtime.oneNewExtraM>:

...

// Load memory from address 0x3826ab0

1666e98: mov 0x21bfc11(%rip),%rcx

1666e9f: inc %rcx

1666ea2: mov %rcx,0x40(%rax)

Relocation table:

3826ab0: R_X86_64_RELATIVE 168f5e0

Listing 1: A function pointer that points to function entry

address plus one.

We address this issue by identifying PC-relative values, both

based on relocations and PC-relative addressing, and perform for-

ward slicing to track additional computation until the value is stored

into a memory location. In this way, we track this irregular this

type of indirect call that does not call to function entries specified

by function symbols.

In this example, the increment by one essentially skips the nop

at the function entry of runtime.goexit. We are not clear why Go

compilers will emit such code. In addition, as this code is in Go’s

runtime, we observed this example in many Go binaries.

In practice, not every binary contains function pointer compar-

ison and function pointer arithmetics. func-ptrmode represents

the best case scenario for binary rewriting, which cannot guarantee

its correctness in a general case, but empirically works for many

real world binaries. If func-ptrfailed for a binary, the user can use

other modes, depending on fewer binary analysis assumptions.

6 RUNTIME RETURN ADDRESS
TRANSLATION

To remove the overhead of call emulation and support runtime stack

unwinding, we design a runtime translation approach to translate

a relocated return address to the original return address before its

use.

First, during binary rewriting, we create a mapping for all pairs

of relocated return address and original return address, and write

this mapping inside the rewritten binary. The runtime library will

extract this mapping from the rewritten binary, which is then ready

for use during runtime unwinding.

Second, we implement a RA translation routine RATranslation

inside the runtime library, which takes the current unwinding PC as

input and returns the corresponding original PC. Since the recorded

return addresses are offsets within the original binary, we need to

first adjust the input PC according to the load base address of the

rewritten binary, and then perform the mapping lookup. If the

input PC is not found, we return the input PC; this case happens

naturally when we are unwinding through binaries that are not

instrumented.

We then describe how we invoke RATranslation to support low

overhead C++ exception unwinding and Go binaries. These two
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language runtime systems use DWARF based unwinding, which use

data stored in .eh_frame sections. Our RA translation approach can

also work with other non-DWARF based unwinding approaches,

such as the optimized stack unwinding method described in frd-

warf [4].

6.1 C++ Exception Unwinding

We use function wrapping for C++ exception unwinding. We first

compile libunwind with exception unwinding support and pre-

load libunwind to ensure exception unwinding uses libunwind

instead of libgcc_s.so. We then wrap the _ULx86_64_step func-

tion from libunwind on x86-64(_ULppc64_step on ppc64leand

_ULaarch64_step on aarch64), which unwinds a stack frame given

the current register state. We wrap this function in the runtime

library to call RATranslation This additional translation cost is

negligible compared to other stack unwinding operations.

Note that in principle it is feasible to use binary instrumentation

tomodify the default exception unwinding routines in libgcc_s.so

to invoke RATranslation. This strategy is more general, but re-

quires additional engineering effort to identify which registers and

memory locations contain the current input PC.

With this RA translation mechanism, we do not need call emula-

tion and call fall-through blocks are no longer CFL blocks.

6.2 Go Binaries

Unlike C++ exception unwinding where the unwinding code is

inside a separate library, the traceback code in Go’s runtime is by

default linked in the binary. We identify that runtime.findfunc

and runtime.pcvalue are the two functions, which take the un-

winding PC as a parameter and perform stack unwinding related

tasks. Therefore, we instrument the entries of these two functions

with a function call to RATranslation and overwriting the input PC

of these two functions with the return value from RATranslation.

Go’s ABI specifies that input parameters are passed through stacks,

so we identify the stack locations that hold the input PC and over-

write it with the translated return address.

We note that Go allows dynamic linking by passing -linkshared

flag at compile time. In this case, the traceback code in Go’s runtime

is in a separate library libstd.so; we only need to instrument func-

tions runtime.findfunc and runtime.pcvalue in libstd.so.

In summary, our approach for supporting stack unwinding has

the benefits of low runtime overhead and simplicity of not dealing

with DWARF, but has the drawbacks of having to tailor instrumen-

tation for different language runtime systems.

7 TRAMPOLINE INSTRUCTION SEQUENCE
DESIGN

The techniques described in previous sections significantly reduce

the number of CFL blocks and the chances of needing trap-based

trampolines. Still, trap trampolines may still be needed when the

functions are very small or when the branching range is not suf-

ficient for the instrumentation code region. In this section, we

address these issues with a new trampoline design.

Table 2 shows the trampolines instruction sequences. Tram-

polines for x86-64and aarch64are pc-relative so they will work

on both position dependent and position independent code. On

Table 2: Trampoline instruction sequences. The łRangež col-

umn shows the ± branching range. The lengths of trampo-

lines are in unit of bytes (B) for x86-64and in unit of instruc-

tions (I) for ppc64leand aarch64.

Arch. Instructions Range Len.

x86-64
2-byte branch 128B 2B

5-byte branch 2GB 5B

ppc64le

b 32MB 1I

addis reg, r2, off@high

2GB 4I
addi reg, reg off@low

mtspr tar, reg

bctar

aarch64

b 128MB 1I

adrp reg, off@high

4GB 3Iadd reg, reg off@low

br reg

ppc64le, the table of content (TOC) register r2 points to the loca-

tion of TOC table and the compiler emits position independent code

to set the content in r2 for PIE. Therefore, trampolines using r2

as the base address on ppc64lealso support position independent

code.

On ppc64leand aarch64, the long trampoline needs a scratch

register to store the branch target. We use register liveness anal-

ysis to find a scratch register. When there is no dead register, on

ppc64le, we save a register to stack and restore the register after

storing the jump target to tar register. The tar register is a special

register reserved for system software. We utilize it for branching.

On aarch64, if we cannot find a scratch register, we fall back to

trap.

On all three architectures, the shorter trampolines in length have

shorter branching ranges. In cases we only have space for a short

trampoline, which does not provide a sufficient branching range,

we design a multi-trampoline approach that we first use a short

trampoline to branch to an area of scratch space and then install a

long trampoline to branch to the relocated code. We identify three

sources of scratch spaces that can be used:

• Padding bytes. Compilers emit padding bytes to improve

cache alignment. On x86-64, it has been shown that padding

bytes are in general long enough for holding the 5 byte

branch. However, on ppc64leand aarch64, the padding is

at most three instructions long.

• Unused space in scratch blocks.

• Original sections that hold information needed for dynamic

linking such as .dynsym, .dynstr, .rela.dyn.

With our trampoline placement analysis and trampoline instruc-

tion designs, the chance of needing trap based trampolines has

been dramatically reduced. Still, we would use trap instructions as

trampolines if necessary.

8 EVALUATION

We implement our new approaches as an extension to Dyninst

and we will work with Dyninst developers to upstream our work.

Dyninst provides programming APIs that allow users to choose ar-

bitrary locations in a binary to instrument (called instrumentation
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points) and allow users to inject arbitrary code to an instrumenta-

tion point.

We write a Dyninst program to verify the correctness and mea-

sure the overhead caused by incremental CFG patching. It instru-

ments every basic block with empty instrumentation, which will

trigger relocating all functions. It overwrites every code bytes in

.text with illegal instructions and then installs trampolines at the

addresses where our analysis determines necessary. This serves as

a strong test to detect any mistakes in our binary rewriting.

8.1 SPEC CPU 2017

We run our test program with SPEC CPU 2017 to generate rewrit-

ten binaries and run the rewritten binaries 10 iterations with 8

threads on the following three systems: (1) a x86-64machine (In-

tel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz), which has 72 proces-

sors and 128GB memory, and runs Red Hat 7.8 with gcc 7.3.0; (2) a

ppc64lemachine (POWER9), which has 160 processors and 256 GB

memory, and runs Red Hat 7.7 with gcc 6.4.0; (3) a aarch64machine,

which has 32 processors and 64 GB memory, and runs Ubuntu 19.04

with gcc 6.4.0.

The base and peak executables are compiled with -O3, -no-pie

to generate position dependent code, and with the same compila-

tion flags. Among the 20 total benchmarks, 627.cam4_s does not

compile on any of the systems, so is excluded. In the remaining 19

benchmarks, there are 8 benchmarks that are written in Fortran

or contain Fortran components; other benchmarks are written in

C/C++.

We only instrument the main executables. We evaluate three

binary rewriting modes dir, which does not modify indirect control

flow, jt, which modifies jump tables and direct control flow, and

func-ptr, which modifies both direct and indirect control flow. All

three modes have trampoline placement analysis and runtime RA

translation enabled. We do our best to compare our approach with

several existing tools, including Dyninst-10.2 (implementing SRBI)

and Egalito (IR lowering) 1. Our dirmode is essentially Dyninst-10.2

with our trampoline placement analysis and runtime RA translation.

Egalito supports both x86-64and aarch64, but even with the help

from a Egalito developer, we cannot get Egalito compiled on our

aarch64system. For Egalito, we compiled the benchmarks with

-pie as it does not support position dependent code.

Table 3 shows the results. First, our approaches can successfully

instrument all SPEC CPU 2017 benchmarks. Dyninst-10.2 has 4

to 6 failed benchmarks. Two of the failed benchmarks use C++

exceptions. We find that while Dyninst-10.2 attempts to use call

emulation to support C++ exceptions, this is only implemented on

x86-64, not on ppc64leor aarch64. In addition, the call emulation

on x86-64does not correctly handle indirect calls through stack

memory locations. Egalito failed with the two benchmarks that use

C++ exceptions, which is a known limitation.

Second, as we described in Section 5, if a function contains unre-

solved jump tables, the function will be marked uninstrumentable.

Our results show that our approach significantly improves in-

strumentation coverage compared to Dyninst-10.2. Notably, on

1We also tried E9Patch, but it failed to generate valid binaries due to an engineering
bug.

x86-64, Dyninst-10.2 marked over 10% of the total function unin-

strumentable in the worse case, while our approach achieved 100%

coverage on x86-64.

Third, we bridge the runtime overhead gap between code patch-

ing and IR lowering. While Dyninst-10.2 does not incur too high

runtime overhead on average, we find that the failed benchmarks

actually would incur prohibitive high runtime overhead when we

fixed the bugs in Dyninst-10.2. We observed about 30% runtime

overhead for the two benchmarks that use C++ exceptions after

fixing call emulation and over 100% runtime overhead for 602.sgcc

after fixing signal delivery from Dyninst’s runtime library to the

application. Our three binary rewriting modes incrementally enable

new techniques described in the paper and the results show that

all our new techniques are effective in reducing runtime overhead.

In particular, our func-ptrcuts the runtime overhead to close to

zero. This shows that the performance advantages of IR lowering

is rooted in being able to rewrite all control flow and code patch-

ing can also enjoy this close-to-zero runtime overhead if almost

all control flow is rewritten. We observed a slight speedup from

binaries rewritten by Egalito on average because Egalito enables

some binary optimizations including reducing paddings between

functions to improve icache efficiency. However, we also observed

a 6.28% worse case overhead. We believe that the binary optimiza-

tions performed by Egalito are not necessarily always beneficial.

For reference, E9Patch [15] reported 359.59% maximal and 110.81%

on average runtime overhead using SPEC CPU 2006 on x86-64.

Next, we compare sizes of rewritten binaries. The results of size

increase are calculated using the size utility from binutils. size

counts only the sections that will be loaded into the memory at run

time; so, unloaded sections such as debugging information are not

counted. We show that our approaches generate similar sizes of

rewritten binaries compared to other code patching based binary

rewriting approaches. Overall, our approaches cause about 105%

maximal and about 68% mean size increase on three architectures.

Compared to Dyninst-10.2, our approaches generate slightly larger

binaries on x86-64and aarch64because we store the return ad-

dress mapping into the rewritten binaries, but significantly smaller

binaries on ppc64ledue to drastically smaller trap trampoline map-

ping. On ppc64le, Dyninst-10.2 tends generate many more trap

trampolines compared to other architectures as the branch instruc-

tion on ppc64lehas only 32MB branching range. For reference,

E9Patch [15] reported 103.75% maximal and 57% on average size

increase using SPEC CPU 2006 on x86-64.

We acknowledge that our approaches generates much larger

binaries compared to Egalito. Essentially, we sacrifice binary size

for better binary rewriting generality. The increased binary file can

be a problem for embedded systems, where memory is a scarce

resource, but should be a reasonable tradeoff for desktops, servers,

and supercomputers.

Finally, we show that increased binary sizes do not lead to higher

instruction cache misses in our approaches. If we suffer from high

instruction cache misses, the runtime overhead for our approaches

would not have been close to zero. In fact, a key design goal of jt

and func-ptrmodes is to reduce the bounce between original code

and the instrumentation code, which will also reduce pollution to

instruction cache caused by original code. In other words, while
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Table 3: Block level empty instrumentation results

Time overhead Coverage Size increase Pass

x86-64 max mean min mean max mean

SRBI 17.27% 5.48% 89.47% 97.37% 95.56% 62.56% 13

dir 16.77% 2.95% 100.00% 100.00% 101.53% 64.27% 19

jt 3.31% 1.35% 100.00% 100.00% 101.53% 64.27% 19

func-ptr 1.20% 0.18% 100.00% 100.00% 101.53% 64.27% 19

Egalito 6.28% -0.68% 100.00% 100.00% 19.34% -4.35% 17

ppc64le

SRBI 12.73% 3.41% 93.55% 98.84% 191.74% 103.33% 15

dir 9.03% 1.27% 96.17% 99.41% 105.13% 69.17% 19

jt 8.91% 0.96% 96.17% 99.41% 105.13% 69.19% 19

func-ptr 3.86% 0.05% 96.17% 99.41% 105.13% 69.19% 19

aarch64

SRBI 8.02% 0.81% 90.00% 97.34% 96.94% 64.11% 14

dir 12.38% 1.00% 99.91% 99.99% 109.30% 68.63% 19

jt 5.10% 0.36% 99.91% 99.99% 109.30% 68.63% 19

func-ptr 0.76% -0.75% 99.91% 99.99% 109.30% 68.63% 19

our approaches increases code sizes, they do not increase the size

of łhot codež.

8.2 Real World Applications

Firefox’s libxul.so: Firefox is written in multiple source pro-

gramming languages. Its Rust code is all linked into libxul.so,

along with its majority of C/C++ code. For Firefox 80.0, libxul.so

has a 120 MiB .text section, which contains about 241K functions.

We ran our test program to rewrite libxul.so and run Firefox with

the rewritten libxul.so using two web browser benchmarks.

The first one is theWeb Latency Benchmark [2], which measures

the browser’s responsiveness. We ran the benchmark 120 times on

the x86-64machine. jtmode achieved 3.07% average overhead and

7.73% maximal overhead; func-ptrmode achieved 2.31% average

overhead and 6.29% maximal overhead. dirmode failed because of

a bug in the runtime library related to handling trap trampolines

installed in library destructors. jtand func-ptrmodes can reduce

trap trampolines and thus avoids this problem and achieved 99.93%

instrumentation coverage. The rewritten libxul.so binaries are

82.83% larger than the original one. Egalito ran into a segfault when

rewriting libxul.so and an Egalito developer confirmed that it

currently does not support some of the meta-data in Rust.

The second one is JetStream2 benchmark [1], which includes a

variety of JavaScript and Web Assembly benchmarks and generates

a single score that represents the performance of the web browser.

We ran the benchmark 40 times on the x86-64machine. jtcaused

2.08% average and 6.26% maximal score reduction. func-ptrcaused

0.20% average and 5.92% maximal score reduction.

Docker: Docker is written in Go. We use our test program to

instrument the docker executable (Docker version 19.03.11) under

/usr/bin on the x86-64machine. We achieved 100% instrumenta-

tion coverage. In fact, Go’s compiler does not emit jump tables for

switch statement. Therefore, dirand jtare the same for Go binaries.

func-ptrmode failed because of the language specific function ta-

bles in Go. Egalito cannot rewrite Go binaries due to unsupported

meta-data and Go’s builtin stack unwinding. We verified the cor-

rectness of our rewriting with 13 Docker’s commands including

pull, run and exec. We also ran several compound commands such

as łdocker rm -f $(docker ps -aq)ž for deleting all containers.

The rewritten binary incurred 6.98% average and 16.27% maximal

overhead for these docker commands; it is 69.28% larger than the

original binary. The maximal overhead of rewriting docker is sig-

nificantly higher compared to libxul.so or SPEC CPU 2017; this

shows the importance of being able to rewriting function pointers

to reduce runtime overhead. We believe future function pointer

analysis for Go binaries will help reduce this overhead.

These two large real world applications show that our approach

can rewrite binaries written in modern programming languages,

such as Rust and Go. Even though we cannot fully rewrite function

pointers to achieve optimal runtime overhead, our approach is able

to rewrite these binaries with small, additional overhead.

8.3 Comparison with BOLT

We performed a different experiment with SPEC CPU 2017 to com-

pare our approach with BOLT [21]. We use Dyninst (with our

approaches implemented) and BOLT to do two different code re-

ordering on x86-64: (1) reverse all functions while keeping the

order of blocks unchanged within a function, and (2) reverse all

blocks in a function while maintaining the order of functions.

For (1), BOLT failed to reorder functions, printing error mes-

sages BOLT-ERROR: function reordering only works when

relocations are enabled. We stress that BOLT emitted such

message even for PIE and shared libraries, where there exist run

time relocation entries. This is expected as BOLT requires link time

relocation to be present to reorder functions. In contrast, our work

can reverse functions for all SPEC CPU 2017 benchmarks.

For (2), BOLT successfully reordered blocks for 9 out of the

19 benchmarks but generated corrupted binaries for the other 10

benchmarks. These corrupted binaries have bad .interp data, caus-

ing them not be able to be loaded. The rewritten binaries emitted
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by BOLT have 11% mean and 33% maximal size overhead. Our work

can reorder blocks for all 19 benchmarks.

9 CASE STUDY

We use Diogenes [28, 29] as a case study, which employs binary

instrumentation to identify unnecessary CPU/GPU synchroniza-

tion and duplicated memory transfers. Prior research has shown

that vendor supplied profiling interface may leave internal GPU

activities unreported [28] and mislead users regarding where the

true performance bottleneck is. Diogenes therefore does not rely on

vendor interface, such as CUPTI from Nvidia, and it directly instru-

ments user space GPU driver (libcuda.so) to collect performance

information.

Diogenes developers identified that there is a stripped function

inside libcuda.so, which is responsible for performing GPU syn-

chronization. This internal function is called by all public interfaces

that may trigger synchronization, such as cuMemcpy. CUPTI only

reports synchronization activities that are initiated through public

interfaces, while missing synchronization activities initiated inter-

nally. Therefore, to have a complete understanding of CPU/GPU

synchronization, it is crucial to identify the internal synchronization

function and instrument it to collect synchronization information.

Diogenes runs a test program to identify this internal synchro-

nization function. This test program launches a GPU kernel that

contains an infinite loop and performs synchronization to wait for

the kernel to complete. As the kernel will never return, the internal

synchronization function will also never return. In addition, Dio-

genes builds call graphs for known synchronization functions in

the CUDA driver, such as cuCtxSynchronize and cuMemcpy. The

internal synchronization function should be at the intersection of

the call graphs. Diogenes instruments these common functions

inside libcuda.so to trace whether a function returns or not. This

instrumentation test generates typically 2 to 3 functions that do not

return when synchronization is performed and Diogenes chooses

the deepest function in the call stack as the internal synchronization

function.

On x86-64, this instrumentation test takes 30 minutes to finish

with Dyninst mainstream. With our improvement, the test takes

30 seconds. This 60X improvement is because our approach signifi-

cantly reduces the use of trap-based trampolines.

We also tried to use Egalito to rewrite libcuda.so, but Egalito

failed to generate a valid library due to not being able to rewrite

symbol versioning information, which is commonly used by C++

libraries.

This example illustrates the value of partial instrumentation:

Diogenes only needs to instrument 700 of the 12644 total functions

in libcuda.so. Our approach can instrument these functions with-

out being impacted by potential difficulties in other functions or

difficulties related to meta-data.

10 DISCUSSION

Binary Analysis: The arm race between binary analysis and com-

piler code optimization is a lasting battle. We expect this battle to

continue especially when Link Time Optimization (LTO) is becom-

ing more popular. In general, our work and other binary rewriting

approaches can readily benefit from advancements in jump table

analysis, function pointer identification, and indirect tail call identi-

fication. In contrast to existing binary rewriting approaches where

the analysis of failure modes is often missing, we have presented

comprehensive analysis on how failures of binary analysis impact

binary rewriting and new strategies to mitigate failures of binary

analysis to improve binary rewriting

Dynamic Binary Instrumentation: Our approach can be ex-

tended to support dynamic binary instrumentation in a straightfor-

ward way. All the techniques described in this paper are applicable

to dynamic instrumentation. One additional engineering effort to

support dynamic instrumentation is the implementation of RA

translation for C++ exception. During dynamic instrumentation,

function wrapping through LD_PREDLOAD will not work. Function

wrapping in the context of dynamic instrumentation can be done

by rewriting the .got table.

Real-world BinaryRewritingApplications: In this work, we

only evaluated our approaches with empty instrumentation; this is

not what users of binary rewriting tools would do. We originally

planned to evaluate runtime overhead of real tools such as function

or block execution counts. We quickly found that the overhead of

real tools is decided by two factors: (1) the binary rewriting infras-

tructure, and (2) how a user uses a binary rewriting infrastructure.

We focused on (1) in this work. We believe (2) is an important

but separate topic. As an example, the Dyninst project and Egal-

ito both provides a sample tool that collects function execution

counts. Egalito’s sample tool runs much faster than the one from

Dyninst. However, we found that the root cause of the overhead

in the Dyninst’s tool was caused by excessive function calls to an

instrumentation library where execution counts are incremented,

while Egalito’s sample tool inserts inlined assembly to increment

execution counts. In other words, one can use Dyninst to collect

function execution counts in the same way as Egalito’s sample tool

and enjoys low overhead. We leave the topic of how to better use a

binary rewriting tool as future work.

11 CONCLUSION

In this paper, we bridge the gap between existing IR lowering ap-

proach, which requires complete binary analysis, and instruction

patching approach, which does not use any binary analysis. Our

incremental CFG patching successfully balanced runtime overhead,

generality, and instrumentation semantics. The foundation is a

trampoline placement analysis. We defined control flow landing

(CFL) blocks as the basic blockwhere control flow can be transferred

from instrumentation to the original code, and established that it

is sufficient to install trampolines at only CFL blocks. We further

reduced CFL blocks by rewriting jump tables and function pointers

and designed runtime return address translation to support C++

exceptions and Go’s runtime stack unwinding. We evaluated our

new approach with SPEC CPU 2017 and libxul.so from Firefox,

achieving small overhead. We also speeded up an instrumentation

step in Diogenes, which instruments libcuda.so, from 30 minutes

to 30 seconds.

We make a first step towards exploring how failures from binary

analysis would impact binary rewriting and believe that this is a

good methodology for reasoning about reliability of binary rewrit-

ing. Our approach currently does not guarantee instrumentation
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safety as we use new heuristics to improve indirect tail call identifi-

cation, aiming for higher instrumentation coverage. We believe that

principled indirect tail call identification is an interesting future

research direction to augment our binary rewriting approach.
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A ARTIFACT APPENDIX

A.1 Abstract

Our artifacts consist of an extension to Dyninst that implements

the new binary rewriting approach described in the paper, test

programs that use Dyninst to instrument SPEC CPU 2017, Fire-

fox’s libxul.so, and the Docker executable, and related scripts for

running the experiments.

A.2 Artiface Check-list (Meta-information)

A SPEC CPU 2017 benchmark suite (version 1.0.2) is needed for

this Artifact Evaluation.

• Compilation: Any version of GCC (we use the system com-

piler to build required version of GCC through spack)

• Transformations: Binary rewriting using Dyninst.

• Run-time environment:Root access to Ubuntu Linuxwith

both terminals and GUI.We recommend Ubuntu Bionic 18.04.

• Hardware: A x86-64 machine (Intel Xeon E5-2695 v4 rec-

ommended), which has 72 processors and 128GB memory; a

ppc64le machine (POWER9), which has 160 processors and

256 GB memory; a aarch64 machine, which has 32 proces-

sors and 64 GB memory.

• Metrics: We use execution time to measure instrumenta-

tion overhead and percentage of instrumented functions as

instrumentation coverage.

• Output: For web browser based benchmarks, results are

shown on the browser. Otherwise, the results are printed in

the console.

• Experiments: Using Bash scripts and Linux commands pro-

vided.

• Howmuchdisk space required (approximately)?: 50GB.

• How much time is needed to prepare workflow (ap-

proximately)?: Two hours.

• How much time is needed to complete experiments

(approximately)?: A couple of days, which can be reduced

by running few iterations of SPEC CPU 2017.

• Archived (provide DOI)?: 10.5281/zenodo.4540633

A.3 Description

A.3.1 How to Access. The artifacts are available on GitHub: https:

//github.com/mxz297/Incremental-CFG-Patching-ASPLOS21-AE.

The repository provides a README file that describes the de-

tailed steps to evaluate the artifact. We briefly summarize the steps

below.

A.3.2 Hardware Dependencies. The SPEC CPU 2017 experiment

can be run on any one of the x86-64, ppc64le, and aarch64 archi-

tectures. The web browser and Docker experiments should be run

on x86-64.

A.3.3 Benchmarks. The benchmarks of our experiments are exe-

cutables as follows.

(1) SPEC CPU 2017 (version 1.0.2)

(2) Firefox (version 80.0) with the Web Latency Benchmark and

the Jetstream2 Benchmark

(3) Docker (version 19.03.6)

A.4 Installation

You can get the artifacts and its dependencies according to the

detailed README file from our AE Github repository mentioned

above.

Please follow the łSetup softwarež section available at https://gi

thub.com/mxz297/Incremental-CFG-Patching-ASPLOS21-AE#setup-

software and run the setup bash script build-x86.sh when run-

ning on x86-64.

A.5 Experiment Workflow

The overall workflow consists of the following steps:

(1) Install the artifact and dependencies

(2) Run the SPEC CPU 2017 experiment

(3) Run the Firefox experiment

(4) Run the Docker experiment

We provide scripts for each of the steps above.

A.6 Evaluation and Expected Result

A.6.1 SPEC CPU 2017.

Installation: In directory setup, there are building scripts such

as build-x86.sh. Run the corresponding script based on the archi-

tecture. Besides installing necessary software dependencies, it will

generate a file spec-config-paths.txt, which contains the paths

needed to copy and paste into the configuration file for running

SPEC CPU 2017.

Evaluation: In directory spec2017, we provide several scripts

and a template SPEC configuration file.

Please refer to https://github.com/mxz297/Incremental-CFG-

Patching-ASPLOS21-AE#spec-2017 for detailed instructions to pre-

pare the SPEC configuration file. We provide a script run_spec.sh

for each architecture to run SPEC experiments (For x86-64, it is

x86/run_spec.sh). and a script run_result.sh to print the re-

sults to the console. Detailed instructions and example runs for

these scripts are available in the README file.

A.6.2 Firefox.

Installation: Firefox (version 80.0) is usually shipped with the

latest Ubuntu 18.04 dist. To install it manually, one can visit https:

//support.mozilla.org/en-US/kb/install-firefox-linux and choose

the version 80.0 for this evaluation.

In directory firefox, we provide scripts to instrument Firefox’s

libxul.so and prepare environments to run the instrumented ver-

sion. run_inst.shwill instrument libxul.so and source env.sh
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to prepare the environments. Then, replace the original libxul.so

with the instrumented one.

Please refer to https://github.com/mxz297/Incremental-CFG-Pa

tching-ASPLOS21-AE#firefoxs-libxulso for detailed instructions.

Evaluation: We provide two web browser based benchmarks for

evaluation.

•Web Latency Benchmark. Download the benchmark from http://

google.github.io/latency-benchmark/latency-benchmark-linux.zip.

Follow the README file inside the zip file to run Web Latency

Benchmark, and collect the results displayed in the web browser.

• Jetstream2 Benchmark. Type https://browserbench.org/JetSt

ream/ in Firefox search box. Click the ‘Start Test’ button to run

Jetstream2, and collect the results displayed in the web browser.

A.6.3 Docker Experiment.

Installation: Docker Installation guide can be found at https:

//docs.docker.com/engine/install/ubuntu/.

Evaluation: In directory docker, we provide scripts to instru-

ment the docker executable and prepare environments to run the

instrumented version.

run_inst.shwill instrument the docker executable and source

env.sh to prepare the environments. Then, replace the original

docker with the instrumented one. Please refer to https://github.c

om/mxz297/Incremental-CFG-Patching-ASPLOS21-AE#docker-ex

ecutable for detailed instructions. Then, run run_docker.sh to test

the rewritten docker executable. here should be no errors.

A.7 Notes

Please exercise with cautions when replacing original binaries (e.g.,

libxul.so and docker). Always prepare a backup for the evaluation.
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